

1

SIMULTANEOUS PLANNING AND CONTROL FOR AUTONOMOUS GROUND
VEHICLES

By

THOMAS C. GALLUZZO

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2006

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Simultaneous Planning and Control for Autonomous Ground Vehicles

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for Intelligent Machines and Robotics,Department of Mechanical
Engineering,University of Florida,Gainesville,FL,32611

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

157

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Copyright 2006

by

Thomas C. Galluzzo

3

I dedicate this dissertation entirely to my mother and father, Janice and Dennis Galluzzo. Their

complete and unwavering support of my education has made this achievement possible.

4

ACKNOWLEDGMENTS

I would first like to thank Dr. Carl Crane for his kind support throughout my graduate

education. He has been an excellent advisor for both my academic and field research. I would

also like to thank my committee, Dr. Warren Dixon (co-chair), Dr. B.J. Fregly, Dr. John

Schueller, and Dr. Antonio Arroyo, for their support and guidance.

This work has been made possible by the Air Force Research Laboratory at Tyndall Air

Force Base, Florida. Thanks go to Al Neese, Dr. Jeff Wit and the rest of their staff. Also, I would

like to thank the Air Force project manager at CIMAR, David Armstrong. He has been a good

friend and mentor throughout this work.

Finally I would like to thank my close colleagues and friends at CIMAR, namely Danny

Kent, Bob Touchton, Sanjay Solanki, Roberto Montane, and Chad Tobler. They have made this

journey all the more exciting and worthwhile.

5

TABLE OF CONTENTS

 page

ACKNOWLEDGMENTS ...4

LIST OF TABLES...7

LIST OF FIGURES ...8

ABSTRACT...10

CHAPTER

1 INTRODUCTION ..11

Background...11
Focus...15
Problem statement ..16
Motivation...17

2 REVIEW OF THE LITURATURE..21

Planning and control input structures ...22
Potential Fields ..22
Navigation Functions...23
Velocity Fields...25
Occupancy Grids ...26
Geometric Models ...27

Motion Command Structures..29
Planning Strategies and Algorithms ...30

Deterministic Geometric Planners...30
Search and Heuristic Methods...31
Vector Methods ...32
Probabilistic Planning..33

Control Strategies and Algorithms ...34
Kinematics Methods..35
Linear Control Systems ...36
Nonlinear Control ..37
Model Predictive Control ..38

3 THEORETICAL APPROACH ..39

Introduction...39
Notation, Assumptions, and Preliminary Theorems...44
A* Algorithm and Admissibility ..46
Quantization and Invariant Sets..53
Heuristic Receding Horizon Control ..56

6

Dual-Frequency Receding Horizon Control...60
Conclusions...63

4 APPLIED APPROACH AND IMPLEMENTATION ...70

Introduction...70
Obstacle Avoidance ..72
Admissible Heuristics for HRHC ...79
Reactive Driver Implementation...84
Faults and Failure Modes..99
Conclusions...101

5 TESTING AND RESULTS..110

Test Plan ...111
Test Review ..112
Test Results...114

6 FUTURE WORK AND CONCLUSIONS...148

Future Work..149
Conclusions...150

LIST OF REFERENCES...152

BIOGRAPHICAL SKETCH ...157

7

LIST OF TABLES

Table page

3-2 Algorithm for a single HRHC iteration ...66

4-1 RD’s ready state control loop. ...103

5-1 The receding horizon control autonomous vehicles test plan..128

5-2 Test path circuit specification data. ...130

5-3 The time based step response metrics. ...130

8

LIST OF FIGURES

Figure page

1-1 Picture of the NaviGator AGV. ...20

3-1 Receding horizon control...67

3-2 The quantization of the system’s input space ..68

3-3 This diagram identifies the basic DFRHC scheme..69

4-1 The NaviGator high level control system block diagram. ...104

4-2 Simple obstacle avoidance case ...105

4-3 The traversability grid concept. ...106

4-4 Path tracking error system. ..107

4-5 Traversability grid dilation ..108

4-6 Planning and control search area. ..109

5-1 An aerial photograph of the Gainesville Raceway road course.......................................131

5-2 The path segments designed ..132

5-3 The position data collected from run 1 of test part 1 ...133

5-4 The logged NaviGator heading signal from test part 1 run 1. ...134

5-5 The cross track error signal from run 1 test part 1. ..135

5-6 The cross track error signal from test part 1 run 2. ..136

5-7 The cross track error signal from test part 1 run 3. ..137

5-8 The output of all three wrench effort signals ...138

5-9 The speed controller performance data logged from run 1 test part 1139

5-10 The position data collected from run 1 of test part 2. ..140

5-11 The cross track error signal from test part 2, run 1. ...141

5-12 The cross track error log from run 2, test part 2. ...142

5-13 Each output signal logged during test part 2, run 1 (the nominal case)...........................143

9

5-14 The speed control system data logged during run 1 of test part 2.144

5-15 The position data collected from run 1 of test part 3. ..145

5-16 The cross track error log from run 1, test part 3. ...146

5-17 Four traversability grids recorded during run 1 of test part 3 ..147

10

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SIMULTANEOUS PLANNING AND CONTROL FOR AUTONOMOUS GROUND
VEHICLES

By

Thomas C Galluzzo

December 2006

Chair: Carl Crane
Cochair: Warren Dixon
Major Department: Mechanical and Aerospace Engineering

Motion planning and control for autonomous vehicles are complex tasks that must be done

in order for a ground robot to operate in a cluttered environment. This dissertation presents the

theory, implementation, and test results for some new and novel Receding Horizon Control

(RHC) techniques that allow these tasks to be unified into one.

The first new method is called Heuristic Receding Horizon Control (HRHC), and uses a

modified A* search to fulfill the online optimization required by RHC. The second is called

Dual-Frequency Receding Horizon Control (DFRHC), and is used to simplify the trajectory

planning process during the RHC optimization.

Both methods are combined together to form a practical implementation, which is

discussed in detail. The autonomous ground vehicle, the NaviGator, developed at the Center for

Intelligent Machines and Robotics, serves as a platform for the implementation and testing

discussed.

Finally, data and their analysis are presented. The results obtained help to support the

theoretical and practical claims made by this dissertation.

11

CHAPTER 1
INTRODUCTION

Everyday more and more robotic vehicles are entering the real world. They are being put to

work just about everywhere manual vehicles have been used in the past. From agriculture, and

mining operations, to inside factories and hospitals, they are increasing safety, efficiency, and

performance in all tasks otherwise considered to be too dull, dirty or dangerous for manual labor.

Unmanned vehicles are being used intensely by militaries worldwide. The United States

for example, has already been using unmanned air vehicles for several years to patrol the skies

over conflicts in foreign lands. Recently, by congressional mandate, the U.S. Army has set a goal

to have one-third of all operational ground combat vehicles operating unmanned by the year

2015 [US00]. This is a difficult feat that, if achieved, will save countless American lives on the

battlefields of tomorrow.

The recent explosion of unmanned vehicle technology has been made possible by vast

improvements in sensors, computers and research developments. There is now a greater

understanding of the problems that need to be solved in order to allow autonomous machines to

operate in the largely uncertain real world. Yet despite all of the advancements, there is still

room for improvement and much work to be done.

Background

Unmanned vehicles are designed to perform a variety of tasks, which they perform with

varying levels of independence. While some unmanned machines are rigidly controlled by

human operators, via telemetry and wireless input, others are sent about with little to no

assistance. These are the type of unmanned vehicles under consideration in this dissertation.

They fall into the category known as autonomous vehicles. Autonomous vehicles are operated

under human control at the highest of levels. Instructions here may simply command the vehicle

12

to reach a goal point or follow a corridor. Commands may also be issued on an even higher level

describing an abstract mission, such as patrolling a perimeter, or sweeping through a defined

area. At these levels, the robot is given a higher amount of command and control authority.

Consequently, the less input provided by the operator, the more influence the machine has over

its own actions.

Autonomous vehicles pose a number of unique problems in their design and

implementation. There is no longer a human-in-the-loop control scheme for the vehicle. The

unmanned system itself must close the loop from environment feedback to low-level vehicle

control. Where a human operator would normally analyze data feedback from telemetry, remote

video, etc. and then decide the best course of action, designers must now instrument the vehicle

so it can automate these tasks. This requires the inclusion of internal state and environmental

sensors, along with onboard computers and software capable of processing the sensed

information and planning the vehicle’s action accordingly. One way of formalizing this overall

process is known as the sense-plan-act paradigm for robotic development [NIL98]. It is a

breakdown of the complete design into compartmentalized tasks and processes, which allows for

ease of implementation of the whole system in general.

The first design step in the sense-plan-act paradigm is the inclusion of different types of

sensors onto the vehicle platform. These sensors serve two general purposes. The first is to

measure the state of the vehicle itself, such as its position, orientation, speed, and perhaps also

health monitoring information such as temperatures, pressures, etc. In humans, this is known as

proprioception, a word derived from the combination of the Latin proprius, meaning “one's own”

and perception. It is a vital part of the robotic system; without proprioceptive sensors the vehicle

13

would not have the feedback necessary to be able to control itself, regardless of environmental

conditions.

The complement of proprioception is exteroception. This is the system’s ability to sense

information originating outside of itself. It is the ability to sense one’s environment. Sensors such

as cameras and range detectors provide this information. The job of the system designer is to

outfit the autonomous vehicle with those sensors necessary and appropriate to provide the correct

environment feedback, thus allowing the system to decide how to act within it.

A key note of importance is that accurate internal state estimates are critical in order to be

able to make sense out of exteroceptive information. An example that helps to understand this is

the estimation of a camera’s orientation on a vehicle. Without knowing a camera’s orientation in

the environment, it is impossible for the robot to be able to know where the sensed images are

coming from. This means that the robot must be aware of its own orientation before it can use

the camera information. The same is true for other environment sensors, and thus it is necessary

to have valid proprioceptive state estimates before analyzing exteroceptive information.

Designers face the problem of ensuring the validity of information from both types of

sensors. This problem becomes very difficult in the presence of noise and other uncertainty,

which is always the case in real world implementations, and therefore it requires careful attention

from design through implementation.

The second step in the sense-plan-act design is giving the autonomous vehicle the ability to

calculate how to react to sensed internal and external information. This step requires the

unmanned vehicle to have the necessary processing and computational power along with the

algorithms and software capable of providing robust and stable control laws that guide the

navigation of the robot. This step replaces the decision making and input provided by an

14

operator, such as with teleoperated control. The decision making process overall produces the

desired response based upon the mission objective of the autonomous vehicle.

Action is the final step in the paradigm. At this phase, all of the sensed data have been

processed and analyzed, and the autonomous vehicle commands its own inputs. As with all

unmanned vehicles, input commands are delivered to the actuators that allow the vehicle to

produce motion: engine fuel valves, amplified electric motors, brakes, and many others.

Autonomous vehicles generate their own decisions at the planning level. These govern how to

drive the vehicle actuators, which cause the platform to move. The sense-plan-act sequence

continues on repeatedly, allowing the vehicle to self-regulate.

This paradigm and its steps described can be applied to all autonomous vehicles, and in

fact all autonomous robots. However, it is specifically used in this dissertation for the design and

application of autonomous ground vehicles (AGVs), although other types of vehicles may

benefit from the topic proposed.

There are many shapes and sizes of AGVs. Different methods of propulsion for AGVs

have been explored by a number of researchers. There are skid-steered and differential drive

vehicles which translate and turn by means of two sets of independent wheels or tracks on either

side of the vehicle platform. There are also car-like vehicles, which move by rotating a set of

wheels, and turn by deflecting the relative angle between the wheels and the vehicle chassis.

Many combinations of propulsion and turning exist in car-like vehicles: front, rear, and all-wheel

drive, for example, are propulsion methods commonly used among them.

There are several unique problems facing AGV engineers that are not of concern for other

types of unmanned vehicles. The machine environment poses the greatest problem for a

successful AGV. Unlike air and water unmanned vehicles, which can operate in a vast

15

uncluttered space, AGVs must often operate within confined spaces, among static and dynamic

obstacles, and on different qualities of terrain. Avoiding collisions with obstacles and refraining

from becoming trapped is a hard challenge to overcome. The vehicle must be able to quickly and

accurately realize its environment, so designers must incorporate robust sensors capable of

resolving the complexity of the surroundings. The vehicle must also have a high degree of

mobility with the ability to respond quickly to avoid potential collisions. Finally, the robot must

be equipped with enough computational power to be able to quickly process the large amounts of

sensor data, and then control its response safely.

Focus

The method by which a ground robot can plan and control its own motion is the subject of

this research. AGV motion planning and control are difficult problems for many reasons. First,

they require the analysis of multidimensional data from multiple sensors. This means that control

algorithms must be able to handle a relatively high throughput of data, and be fast enough (on the

machines that perform them) to maintain vehicle stability and performance. Second, the data

must be processed with consideration for any uncertainties in sensing and vehicle response.

As aforementioned, uncertainty is always a concern when machines are operating in the

real world. These uncertainties can be attributed to several sources, some examples include

sensor limitations, noise and the inherent unpredictability of operating environments. Uncertainty

in vehicle response is attributable to the fact that machines can only respond to their inputs with

a limited degree of repeatability. External disturbances and wear are examples of variation

sources that affect how a vehicle will respond to a given input. By minding these influences

during the data processing and planning phase, an AGV is far more likely to respond correctly in

its situation.

16

Another problem to motion planning and control is that there must be consideration for the

motion constraints of any actuators involved or the vehicle platform itself. This is especially an

important issue for car-like vehicles because they are subject to a nonholonomic constraint. This

means that although a vehicle driving on a surface may have three degrees of freedom,

(translation in two dimensions and rotation in one) it can only translate in the direction it is

immediately facing. Consequently, the equations of motion describing the vehicle dynamics are

non-integrable, which makes the problem much harder to solve. This also means that car-like

vehicles are under actuated. In other words, the number of control inputs to the system is less

than the number of degrees of freedom in the system’s configuration space. This is illustrated by

the fact that a car-like vehicle can only move by input of a steering wheel and the rotation of its

drive wheels, yet given the right control sequence, it can assume any position and orientation.

This is the nature of the problem undertaken in this dissertation.

Problem statement

A formal description of the general AGV motion planning and control problem can be

formulated as follows:

Given:

Sensed data describing the local environment around the vehicle, and a goal structure

(point, line, trajectory, etc.) which the vehicle is desired to reach, or track, and also, feedback

estimates of the full vehicle state, i.e. position, velocity, and orientation.

Develop:

An algorithm capable of optimizing and executing the vehicle’s motion through its local

environment, and obtaining the goal. The algorithm must be able to maintain throughput of

sensor data and command the vehicle actuators accordingly.

17

Motivation

For over a decade The Center for Intelligent Machines and Robotics (CIMAR) has been

actively pursuing research in the field of autonomous robotics and AGV technology. A key

challenge during this endeavor has been tackling the problem of motion planning and control.

The research of AGVs at CIMAR has primarily been conducted under the direct support of

the Air Force Research Laboratory (AFRL) at Tyndall Air Force Base. The technology

developed at CIMAR under this program has advanced the fields of automated surveying and

mapping, unexploded ordinance detection, mine field clearing, and modular system architecture

design.

Over the years, many different groups of people at CIMAR have successfully automated

over ten unmanned ground vehicles. The latest of theses vehicles is called the NaviGator, shown

in Figure 1-1. It is a front-wheel steered, all-wheel drive platform.

The NaviGator is a custom built all-terrain vehicle, with a mild steel roll bar frame. It has

9" Currie axles, Bilstein Shocks, hydraulic steering, and front and rear disk brakes with rear

emergency brakes. It has a Honda 150 HP transverse engine mounted longitudinally. A locked

transaxle connected to the engine drives front and rear differentials. It has two integrated 28 volt

alternators that generate 4800 watts of continuous electrical power. This power is delivered to

onboard computers, actuators, and other electronics, along with a ¾ Ton air conditioning unit

that cools an enclosure which houses most of the vehicle’s electrical equipment. The NaviGator

is equipped with a number of sensors caged on the front of the vehicle. The sensors include a

radar unit, cameras, and three scanning laser range detectors. All are used for environment

sensing. The vehicle also has an integrated GPS/INS system, which is used for estimating its

position, orientation and speed.

18

This vehicle was used by CIMAR as an entry to the DARPA Grand Challenge national

competition. DARPA is the Defense Advanced Research Projects Agency, a small division of

the United States Department of Defense, and in 2004 through 2005 it sponsored the Grand

Challenge competition in an effort to rapidly advance experience and innovation in AGV

technology. The competition was designed in a manner that would allow participating research

groups to help accelerate national research in this field, without diverting resources from other

ongoing government projects.

The goal of the competition was to build and field a robotic vehicle that could traverse over

150 miles of desert terrain without any human control. This was a technological feat that, prior to

the 2005 competition, had never been accomplished. However, in October 2005, five teams

entered vehicles that successfully completed the entire challenge course.

Although team CIMAR’s NaviGator was not able to finish the competition, it did advance

as one of 23 Finalists (out of over 200 applicants) and complete over 15 miles of the course,

which demonstrated the tremendous effort put forth by all team members. The NaviGator is also

considered a success because it will continue to serve as a research and development platform at

CIMAR for years to come.

The development of an online path planning and control algorithm for the NaviGator has

been the driving motivational force behind this research topic. As part of the effort to enter the

NaviGator into the 2005 DARPA Grand Challenge, a new approach to motion planning and

control was developed. The approach is a variation on the receding horizon control strategy,

where a sequence of open-loop commands are repeatedly optimized and delivered to the system.

In a typical receding horizon controller, the optimal set of commands is calculated by

minimizing a quadratic cost formula. The technique devised for the NaviGator is unique in that it

19

obtains a near optimal solution via a heuristic search. This has several advantages and

disadvantages that will be discussed in detail in the following chapters. The fundamental

significance is that this technique provided a well fit motion planning and control solution for the

NaviGator. Although many other techniques and approaches exist, the research and advancement

of this technique may benefit other implementations where it is suited.

20

Figure 1-1. Picture of the NaviGator AGV in race configuration, which was taken just before the

DARPA Grand Challenge in October, 2006.

21

CHAPTER 2
REVIEW OF THE LITURATURE

To compare and contrast the newly devised control strategy, a review of published research

literature has been conducted. Various researchers have explored different methodologies for the

AGV motion planning and control problem. The majority of the methods brake down the

problem into two individual tasks.

In one task, sensor or a priori data are analyzed and a geometric path or a time varying

trajectory of the robot’s motion is planned through an environment or workspace. These motion

describing structures are often optimized for travel time, distance, or minimum collision

potential. Sometimes combinations of parameters are optimized. The way in which the planning

problem is formulated also varies greatly between applications. As input to the planning

algorithms researchers use different techniques to describe the local environment. While some

use discrete raster images or vector geometry, others use continuous mathematical functions. The

different formulations have unique characteristics that will be described in detail in this chapter.

The control task attempts to solve the problem of regulating the vehicle in order to execute

a previously determined motion command. This command can be as simple as a desired position

and orientation, or as complex as a trajectory sequence requiring specific turning maneuvers and

speed changes. As with planning, the techniques developed for the control task are diverse.

Many researchers have struggled with and found viable solutions for dealing with the

nonholonomic and other constraints of AGVs. Although the methods differ greatly in

implementation, there is as always, a tradeoff between stability, robustness, and performance.

The review of research has been broken down into exploring the input and motion

structures and then the planning and control algorithms themselves. Input structures represent

sensor and other required data delivered to the planning or control algorithms. Likewise the

22

results of the planning algorithms are delivered to controllers via a motion structure. By

understanding the different input and output structures, a greater understanding of the algorithms

and techniques is gained.

Planning and control input structures

Potential Fields

A category of input structures exist in the form of mathematically described functions and

fields. One of the earliest types of fields explored is known as a potential field. In 1985 Khatib

[KHA85] presented an obstacle avoidance approach for manipulators and mobile robots based on

the “Artificial Potential Field” concept, where obstacles were represented as potential energy

fields that generated repulsive forces, and goal configurations for the robot were represented as

attractive gravitational fields. The resultant imaginary force acting on the robot was used to

guide its motion.

Since then researchers have used potential fields in countless scenarios. Barraquand et al.

generate collision free paths for a three degree of freedom mobile robot using potential fields

[BAR92]. Their approach to path planning consists of incrementally building a graph connecting

the local minima of a potential function defined over the configuration space of the mobile robot.

A search was conducted over the graph until a goal configuration was obtained. This was an

efficient approach that did not require any pre-computation steps (as other researchers had

suggested) to be performed over the potential field function.

Warren addresses the issue of global path planning with potential fields [WAR89]. Here

planning of a manipulator and mobile robot motion was done in configuration space (C-space), a

multi-dimensional space described by a set of generalized coordinates which represent the

position and orientation of a rigid body. In his implementation, Warren constructs an arbitrary

trial path in the configuration space of the robot, which connects the initial configuration to the

23

goal configuration via a set of straight line segments. The entire path is then modified under the

influence of the potential field until a minimum potential path is found. The effect of modifying

the entire path at once greatly reduced the problem of becoming trapped in a local minimum of

the potential field, however, a collision-free path could still not be guaranteed.

Several limitations of potential field methods applied to AGVs were identified by Koren

and Borenstein [KOR91]. Specifically they identified four problems that could arise when a

mobile robot was subjected to the imaginary forces of obstacles and a goal. First, a mobile robot

could become trapped in the local minima of a potential field; as could occur when the goal

configuration was blocked by a U-shaped obstacle. (This phenomenon of potential field methods

was previously identified by a number of other researchers; see Andrews et al. [AND83] and

Tilove [TIL90].) Second, robots could often favor longer paths to travel around any closely

spaced obstacles that they encountered, rather than simply pass untouched between them. Third,

the robot motion could become unstable when passing nearby obstacles, and finally, oscillations

could occur when a robot is traveling down a narrow corridor. This is because repulsive forces of

walls close to either side of the robot caused oscillatory motion when it was subjected to a small

disturbance. For these and other reasons, researchers continued to pursue other ways of

formulating the planning and control problem.

Navigation Functions

A special kind of potential field function, known as a navigation function, was introduced

in 1988 by Rimon and Koditschek [RIM88]. The navigation function is unique in that the only

minima occurs at the goal configuration for the robot, no other local minima exists. This

prevented the robot from becoming stuck in any local minima that might exist in a traditional

potential field. The navigation function techniques however, are susceptible to other drawbacks.

For a proposed application offered by Rimon [RIM91] the robot was required to operate in a

24

circular space inhabited only by disk shaped obstacles. This is a scenario with little practicality in

a real-world environment, and only considered effective in a highly controlled experiment.

Another limitation is that the navigation function can be difficult or expensive to compute.

Other researchers have attempted to overcome these limitations. Konkimalla and LaValle

were able to compute navigation functions for an arbitrary shaped workspace containing

arbitrary clutter [KON99]. The navigation functions were computed numerically for

nonholonomic systems, which they demonstrated by using their techniques to generate optimal

motions for car-like robots in simulation. With their method, the navigation function was

computed over a uniformly distributed quantized free configuration space. This was described by

a set of points in the robot’s n-dimensional configuration, which excluded the space occupied by

any obstacles. However, since the robot was not constrained to occupy only discrete points in the

space, the navigation function was interpolated (with a novel technique) between points in order

to allow the vehicle to maintain smooth trajectories, and also to keep the free configuration space

continuous. This method was also unique in that it computed the navigation function iteratively

over a propagating wave-front, which originated at the goal configuration. This was a key to

allowing arbitrary shapes in describing the navigation function. A drawback of the methodology

developed is that it assumed the robot was operating in a static and predetermined environment.

Thus, the navigation function algorithm developed by Konkimalla and LaValle, was still not

suitable for real-time application.

One real-time strategy for using navigation functions to control a robot operating in a

dynamic environment, was proposed by Loizou et al. in 2003 [LOI03]. Their approach was to

develop a non-smooth navigation function, which allowed for faster computation than a smooth

function. To further simplify computation, the obstacles in the dynamic workspace were assumed

25

to be disk shaped, as with Rimon’s application. The approach was proven to work in simulation,

and guaranteed collision avoidance and motion convergence. However, arbitrarily shaped

obstacles could not be accounted for.

Velocity Fields

Another type of field used to control an AGV is known as a velocity field. Here the

environment of the robot is assumed to have an imaginary flow field. The direction and

magnitude of the field at any given point describes the desired velocity of the robot. This concept

was pioneered by a number of researchers in the early 1990’s. Li and Horowitz first published a

paper on the subject in 1993 [LI93]. In their research they remarked that velocity fields had an

advantage over a traditional potential, or navigation functions, in that they accounted for the

robot’s desired motion over its complete workspace. In other methods, the path that a robot

followed in order to reach its goal could not be predetermined without integrating the dynamics

functions. Using velocity fields to describe the desired motion removed that ambiguity, because

the robot’s desired speed and orientation is specified at all possible configurations.

Li and Horowitz extended their initial work by applying the velocity field concept

specifically to robot contour following problems [LI96]. In this research, a velocity field was

constructed in a manner that would result in the robot tracing out a desired geometric contour.

This was made possible because the resulting control scheme applied to the robot ensured

convergence onto a stable limit cycle, which was equivalent to the desired contour.

A novel methodology for calculating desired velocity fields was suggested by Keymeulen

and Decuyper [KEY94], in which a field could be generated via fluid dynamics. In what they

describe as a metaphorical approach, by placing an imaginary fluid source at the robot, a fluid

sink at its destination, and constraining the boundary conditions of the workspace and obstacles,

the streamlines of the resulting fluid flow could be used to describe the desired path of the robot.

26

They showed that this was a very powerful approach because it was not susceptible to local

minima, and also the imaginary flow would be able to instantly adapt to any dynamic topology.

The major drawback of the fluid dynamics approach is the very expensive computation

necessary when recalculating the flow field upon any change in the robot’s environment. At the

time of publication, the authors suggested that it was well suited on a parallel, analog, or optical

computing machine. However, as computing machinery continues to advance, this powerful

method becomes more and more applicable to real-world implementations.

Dixon et al. were able to establish a control scheme that allowed a nonholonomic Wheeled

Mobile Robot (WMR) to track a desired velocity field [DIX05]. This extended the work other

researchers had done, which did not account for nonholonomic systems. The group developed an

adaptive controller, and employed a Lyapunov-based analysis to prove global asymptotic

tracking of the velocity field.

Occupancy Grids

Mobile robots are often designed to operate in environments that are unstructured and

unknown. In these cases, the system has no a priori model or knowledge of its surroundings.

Occupancy grid structures offer a means for a robot to map and rationalize this unknown space.

An occupancy grid is a multidimensional tessellation (or array) of space into uniformly shaped

cells. Each cell in the array contains a probability estimate that identifies whether the space is

occupied or empty.

The earliest uses of occupancy grids for mobile robot planning and control were developed

by Alberto Elfes at Carnegie Mellon University. Elfes initially described the implementation of

occupancy grids on mobile robots in a series of papers published in the mid 1980’s. Initially they

were used for a sonar-based mapping and navigation system [ELF86]. Here the general issues

pertaining to occupancy grids, such as spatial resolution and sensor uncertainties were described

27

conceptually. Several years later, the formalized mathematics and problem structures were

presented [ELF89]. In this research, derived estimates of the cells were obtained by interpreting

range readings using probabilistic sensor models. A Bayesian estimation procedure was

employed to accurately calculate evolving grid cell states as sensor readings repeated in time.

Borenstein and Koren presented an approach that combined the concepts of occupancy

grids and potential fields [BOR89]. In their method known as the Virtual Force Field, each

occupied cell in the grid applied an imaginary repulsive for to the robot. The magnitude of the

force was proportional to the probability that the cell is truly occupied by an obstacle. This

method yielded promising results, in its robustness to sensor uncertainty, however it still was

susceptible to the drawbacks of potential fields described in the previous section.

A classification of occupancy grids, described by Elfes as inference grids (where cells

contain an estimate of multiple possible states) was employed by Touchton et al. at CIMAR

[TOU06]. In their implementation, a type of structure named traversibiliy grid stores an estimate

of the quality of terrain contained in the robot’s local environment. Here each cell expresses the

degree to which a robot would be capable of successfully passing through the contained space.

This level of classification was felt necessary in order to accommodate AGV navigation off-road,

where space can rarely be considered only occupied or empty.

Geometric Models

In some of the earliest path planning research, the robot’s environment and workspace

were represented with geometric primitives such as lines, polygons and circles. These structures

were used because they required only a minimal amount of computational memory (a resource

more limited at the time than today).

Research conducted by Lozano-Perez and Wesley [LOZ79], involved the planning of a

polyhedral object moving among other known polyhedral objects. In this original work, a graph

28

known as a visibility graph was formulated to find free paths for the moving object. The graph

was constructed by connecting straight line segments between the vertices of the polyhedrons. It

was called a visibility graph, because connected vertices could “see” each other unobstructed

from the polyhedral objects.

A different approach to planning among polygonal obstacles was presented by Takahashi

and Schilling [TAK89]. In their method, the free space of the robot’s environment was

represented with a generalized Voronoi diagram, which is the locus of points equidistant from

two of more obstacle boundaries including the workspace boundary. For a polygonal workspace

inhabited by polygonal objects, the diagram consists of only linear and parabolic line segments.

The Voronoi diagram method made for more efficient planning, in that it consists of fewer

vertices than a visibility graph, and also has the advantage of keeping the motion plan further

away from obstacles. However, the method in general produces larger travel distances, which

can reduce performance.

A method for maintaining minimum distance optimality, and increasing computation

efficiency was proposed by Rohnert [ROH87]. In this method, a structure called a tangent graph

was constructed, where common tangent lines connect convex polygons in the robot’s

workspace. It is more efficient because it contains fewer vertices than a visibility graph. A means

of computing the tangent graph was suggested by Liu and Arimoto [LIU94]. The research group

proposed an algorithm called the moving-line algorithm, which efficiently computed the graphs

by decomposing the construction task into two sub-problems: detecting common tangents, and

intersection checking among the tangents and obstacles. Their algorithm performance was

demonstrated with a number of simulated experiments and the results were presented.

29

Motion Command Structures

The simplest input command structure to regulate a mobile robot’s motion is a position and

orientation set-point, in which the robot is desired to maintain a fixed and specified pose.

Another commonly used motion structure represents the path geometry of the mobile robot

together with an associated speed profile. Complete time varying trajectories are also common in

practice. In this case, the vehicle’s complete position and orientation is denoted as a function of

time.

A broad overview of the different motion commands has been detailed by De Luca et al.

[DEL98] in a chapter of the book: Robot Motion Planning and Control, edited by Jean-Paul

Laumond. In their discussion they point out that these three motion structures can sometimes be

cast as a higher level problem or sub-problem of one another. For example, some research has

suggested that the path regulation problem is a subset of the higher level trajectory tracking

problem.

In their discussion, they analyze the controllability of a car-like robot attempting these

three tasks. Their analysis employs a useful tool known as the Lie Algebra Rank Condition (see

[ISI95]), which allows the controllability of a drift-less nonlinear system to be tested. Along with

this test they exemplify that set-point stabilization of a car-like robot cannot be achieved via a

smooth time-invariant feedback control law. A result established on the basis of Brockett’s

theorem [BRO83], which implies that a necessary condition for smooth stabilization of a system

is that the number of inputs equals the number of states. Since this is not the case, such condition

is violated.

Despite the varying complexities and difficulties of all three control tasks, feedback control

solutions have been identified for them. De Luca and group, present a number of the techniques,

30

and the associated mathematics for them. Simulated results are also presented in their overview.

Some of the strategies are presented later in this chapter.

Planning Strategies and Algorithms

As previously stated, AGV motion planning and control is often divided into a planning

task, which generates a motion command for the robot, and a control task, which regulates the

vehicle onto the predetermined motion structure. A vast number of methods have been developed

for the planning task. They are described here in detail.

Deterministic Geometric Planners

Early research in nonholonomic path planning considered only simple cases where

environmental constraints and obstacle avoidance were not part of the problem. Pioneering work

was done by Dubins during the late 1950’s. He proved that optimal paths connecting a car-like

vehicle from an initial position and orientation, to a final configuration state, were made up of

straight line segments and circular arcs, with radius equivalent to that of the vehicle’s minimum

turning radius [DUB57]. This theory was developed for a vehicle traveling only with forward

motion. Reeds and Shepp extended the work of Dubins to include motion for a vehicle traveling

both forwards and backwards [REE91].

There are several drawbacks to these planning methods. The most notable is that they do

not consider the presence of any obstacles in the workspace of the vehicle. Also, the curves are

made up of segments with discontinuous curvature at the connections between them. This means

that for a car-like robot to follow the curves exactly, it must come to a stop at the segment

junctions in order to change its steering angle.

31

Search and Heuristic Methods

A group of motion planners rely on heuristic or graph searching techniques. With these

methods, a plan is constructed that is based on the result of searching through discrete graph

representations of possible robot configurations in its obstacle cluttered environment.

A common search technique for these applications is called A* (A-star), and it was

originally developed by Hart, Nilsson, and Raphael [HAR68]. Their research presented the

formal basis for showing that the search method is both admissible and computationally optimal.

Since its inception, A* has been used in a wide variety of mobile robot planning algorithms.

Kuan et al. use an A* search to find a path to a goal configuration for a mobile robot

navigating among convex polygon shaped obstacles [KUA85]. Their method locates critical

“channels” and “passage regions” within the free space, which are then decomposed into non-

overlapping geometric-shaped primitives. From this representation, the path planning algorithm

then finds trajectories inside the channels and passage regions.

Another implementation searches through a multi-resolution grid to find a path. Presented

by Kambhampati and Davis [KAM86], a method using a quad-tree hierarchical representation of

the workspace is exploited to gain a computational savings in the search. Their technique was

more efficient because it did not consider the excess detail in parts of the space that did not

substantially affect the planning operation.

A minimum time planning approach for a robot was given by Meystel et al. [MEY86]. In

this method, the robot’s acceleration, deceleration and turning capabilities were taken into

consideration during planning in order to minimize the overall time-to-goal for the calculated

trajectory. Their algorithm employed the A* search to optimize the plan.

Thorpe and Matthies offer a path relaxation technique for mobile robot planning [THO85].

Here a grid search is performed to calculate and initial trajectory to the goal. Once an initial

32

solution is established the path is “relaxed” by allowing the nodes that describe the trajectory to

follow the negative gradient of the cost grid. This is done to determine a more optimal final

solution, and helps plan a path that is not too close to any obstacles.

Vector Methods

In an effort to increase computational efficiency, reduce algorithm complexity, and to

correct some of the problems resulting from field-based control methods, a number of

researchers have devised methods for planning using vector geometry.

Borenstein and Koren pioneered the Vector Field Histogram method [BOR91]. In this

method, a polar histogram of obstacle densities was constructed around a window centered at the

robot’s location. The density values in the histogram were calculated by analyzing how objects

in a grid interacted with a set of vectors originating at the robot. Once the histogram was

calculated a desired heading vector was determined based on a target heading and the valleys in

the histogram. Results showed successful local planning, but a possibility for the robot to

become “trapped” in dead-end situations existed.

A modification to the previous method was developed by An and Wang [AN04]. Their

method known as Vector Polar Histogram differs slightly form Vector Field Histogram in that

the histogram is calculated directly from a polar sensor (rather than a grid), and it is transformed

into a binary histogram based on a dynamically changing threshold. This threshold value is

calculated in real-time and is based on the robot’s velocity. Overall, the modifications were

claimed to offer simpler and equally effective local obstacle avoidance.

Vector based planning methods have also been used to provide a simple means for

avoiding moving obstacles. A technique involving relative velocity vectors was offered by

Fiorini and Shiller [FIO93]. A collision free path was planned for a circular object moving

among circular obstacles with constant linear motions. To plan the path a graph was constructed

33

with straight line segments, which was a generalization of the visibility graph to the case of

moving obstacles.

Jing and Wang advance a vector technique for avoiding obstacles in an uncertain

environment, specifically for a mobile robot [JIN05]. The dynamic motion planning problem was

transformed into an optimization problem in the robot’s acceleration space. As with Fiorini and

Shiller’s method, relative velocity vectors between the robot and encountered obstacles are used

in order to define the robot’s desired behavior. With the behavior determined, a feedback control

law was established, and stability in each planning period was proven.

Probabilistic Planning

Probabilistic methods for path planning have become increasingly popular for mobile robot

navigation. These techniques are often designed to guide the robot through free space in a

manner that reduces the risk of collisions or other undesired behaviors. Usually, an iterative

analysis of the local environment is conducted as a preliminary step to probabilistic planning.

Kavraki et al. developed an algorithm to calculate probabilistic roadmaps of a robot’s free

configuration space [KAV96]. In what they characterize as the learning phase of the planning

method, the roadmaps are constructed by repeatedly generating randomized free configurations

of the robot and then connecting these states with a simple motion planner. This process

continues until enough configuration nodes exist to successfully plan from a starting

configuration to a goal. The number of free configuration nodes generated depends on the

intricacy of the configuration space.

A probabilistic method for obstacle avoidance amongst moving obstacles with motion

uncertainty is proposed by Miura et al. [MIU99]. In this research, moving obstacles within the

robots environment are modeled with motion uncertainty, i.e. the predicted future location of the

object is uncertain. The obstacles are also modeled for sensing uncertainty, in which the sensed

34

instantaneous state of the obstacle is unsure. Based on these probabilistic models, their method

repeatedly selects the best motion plan in a decision-theoretic manner, that is, by a one-step look-

ahead search in a probabilistic search tree.

Cell decomposition is a path planning method that involves partitioning the free

configuration space of the robot into disjoint sets, called cells. Methods to generate the cell sets

are often costly due to the complexity of determining whether a cell is entirely contained in the

free configuration space or not. Lingelbach presents a probabilistic method to cell decomposition

where cells are probabilistically sampled to determine if they are free [LIN04]. This method

offered an improvement in the efficiency of cell decomposition for high dimensional

configuration spaces.

Thrun et al. present a broad explanation of probabilistic path planning algorithms for

robotics [THR05]. Their overview describes a technique known as value iteration, as a solution

to a Markov decision process. In this process the state of the robot’s environment is assumed to

be known, but an allowance for stochastic action effects is maintained. In other words, the

robot’s response to a given input may be uncertain. The value iteration method in effect produces

a probabilistic navigation function, which is used in planning to guide the robot’s motion.

Control Strategies and Algorithms

The control task for an AGV involves the regulation of the vehicle onto a predetermined

motion command. Here the goal is to minimize any error between the vehicle’s state and a

desired state. This is done by commanding the vehicle plant inputs in a deliberate manner, which

is often specified by a mathematically defined function, or procedure. Many control methods

have been developed for this purpose and some are described here in depth.

35

Kinematics Methods

Research in path tracking control of an AGV has demonstrated successful implementations

of kinematic control methodologies, where system equations of the vehicle’s motion about a

geometric path are used to develop a controller. An early kinematic technique known as pure

pursuit was originally developed at Carnegie Mellon University. The solution gained much

popularity due to its simplicity and performance.

Coulter, a researcher at Carnegie Mellon, describes an implementation of the pure pursuit

path tracking algorithm and some of the stability and performance considerations for it [COU92].

Essentially the method is used to calculate the arc (or curvature) necessary to get the vehicle

back on the desired path. This is done by choosing a look-ahead distance, and calculating the

goal position on the path at that distance. This leads to the analogy that the vehicle is “pursuing”

a moving point, which is always at some distance ahead of itself.

A more in depth analysis of the algorithm was presented by Ollero and Heredia [OLL95].

In their research they presented mathematically formulated stability criteria for a vehicle tracking

a straight line and circular arcs. Their work showed that the stability of the closed-loop system

was dependant upon the look-ahead distance parameter, and any time delays in feedback data.

They also presented simulated results; for varying time delays and tuning on the look-ahead

parameter.

Vector pursuit is another kinematic technique devised for path tracking. This method was

developed by Wit [WIT00] in his doctoral research at CIMAR, and it involves determining the

desired motion of the vehicle based on the theory of screws (introduced by Sir Robert S. Ball in

1900 [BAL00]). In an effort to correct some of the drawbacks of pure pursuit, Wit includes the

vehicle’s desired orientation at the look-ahead point in the geometric analysis. Vector pursuit

allowed for the consideration of both heading and distance errors without any mixed units (which

36

other methods had) in the mathematical foundation. This resulted in a geometrically meaningful

control scheme.

Linear Control Systems

Linear control system theory contains a rich set of analysis and synthesis techniques for

designing and implementing controllers. Many of these methods have been developed, tested,

and proven for several decades, and are still commonly used in practice today. This is because

the methods are often simple and robust in implementation, and because of these reasons,

researchers have applied the theories to the control of AGVs.

Nelson and Cox, a team of researchers at AT&T Bell Laboratories, demonstrated the use of

a simple proportional control scheme on a mobile robot [NEL88]. The controller was used to

guide the vehicle along a set of predetermined path segments. There experimental results showed

several problems with the control methodology. For example, the vehicle stability was affected

directly by its speed, the faster the motion the less stable the path tracking. Also, transitions

between path segments of varying curvature led to initial overshoots, which could not be

corrected by control tuning.

In a more recent effort, Choi presents a proportional derivative controller for an

autonomous highway vehicle [CHO00]. Here the parameters are designed to be adaptive, in an

attempt to correct persistent disturbances from wheel misalignments, unbalanced tire pressure,

side wind, etc. The compensator developed provided closed-loop control for the vehicles lateral

motion in highway lane following, and was demonstrated in experiment to successfully stabilize

the vehicle, and reject disturbances.

A modern robust linear control technique known as H∞ (H infinity) control, was used by

Kim et al. to steer an AGV [KIM01]. This technique was used to synthesize a state-space

37

controller, which was robust to the quantifiable uncertainty of: system parameters, noise, input

signals, etc. In this group’s research, the controller developed was tested on a car vehicle

tracking a straight road. Initial results showed effective performance in tracking the road, and

merited additional experimentation on curved roads.

Nonlinear Control

Researchers in the field of mobile robot control have widely developed nonlinear solutions

to the problem. Nonlinear controllers are designed and analyzed with a number of mathematical

tools mostly based on the foundation of Lyapunov stability criteria, which will be discussed in

chapter three of this document. These methods are used, because the mobile robot control

problem is highly nonlinear in nature, and it is not well suited for linearization or other linear

control techniques.

Significant results were obtained by Samson during the early 1990’s. In this work a smooth

time-varying feedback controller was developed to regulate a wheeled mobile robot to an

arbitrary set-point [SAM90]. This was a powerful result, because it showed that stable set-point

feedback regulation, albeit time-varying, was practical despite the implications of Brockett’s

condition [BRO83], which proved time-invariant feedback for mobile robot set-point regulation

is not possible.

Jiang et al. presented another time-varying feedback result for globally stable tracking of a

mobile robot pursuing a reference trajectory that is a function of time [JIA97]. In this work, the

group presented simulated results, which validated their theoretical results. The robot kinetics

equations were included in the design via an integrator backstepping technique.

Dixon has developed several unified regulation and tracking controllers, which guarantee

stability of a wheeled mobile robot [DIX00]. The differentiable kinematic control laws

38

developed utilize a damped dynamic oscillator in which the frequency of oscillation is tunable.

These results led to continued successful work with simulated and experimental results.

Model Predictive Control

Model predictive control is an advanced technique often used in industry to solve

optimization problems under certain constraints. A specific form of model predictive control is

known as receding horizon control. In this methodology, the control problem is optimized over a

finite period of time, and the resulting control signal is applied to the system. This process is

continually repeated. In each optimization, the first control signal in the optimized control profile

is delivered to the plant. The remaining signals are discarded.

Recently this technique has been applied to mobile robot control. Gu et al. presented a

result where a wheeled mobile robot was regulated to an arbitrary set-point using a receding

horizon controller [GU05]. Their results showed that stability for the robot could be achieved

and simulated data were given. Computation time was the main drawback of their result. They

cited that real-time implementation of the controller was not practical given their method of

optimization, and suggested further work was necessary in order to find ways of improving the

computation efficiency. Binary decision trees and artificial neural networks were two methods

suggested for incorporation, by the group.

The following chapter offers the theoretical foundation and analysis for a new and novel

methodology used to solve the computational problems faced in the real-time implementation of

a receding horizon controller, particularly on an AGV.

39

CHAPTER 3
THEORETICAL APPROACH

Introduction

Motion planning and control for an AGV are both challenging tasks. A novel methodology

for unifying these into one task, while maintaining online computability, is the main contribution

of this dissertation. A newly devised heuristically optimized receding horizon controller (HRHC)

is proposed for the combined task. The purpose of this chapter is to explain and formalize the

mathematical foundation of the approach. Another contribution of this dissertation is a novel

extension to the standard receding horizon control scheme. The extension, called Dual-frequency

receding horizon control (DFRHC) is also presented in this chapter.

Receding horizon control (RHC), or more generally, model predictive control (MPC) is an

advanced technique used to solve complex constrained control problems online. A broad

overview of the technique is offered in [MAY00]. It employs methodology from optimal control

theory to determine the best control action for a given state. In receding horizon control, a

sequence of open-loop plant input commands are optimized over a finite time horizon. The first

command in the sequence is then used as the control action for the plant and the optimization

process repeats to determine a new control. Feedback and disturbance rejection are incorporated

into the technique by updating state estimates at a discrete time interval and executing the

optimization procedure over the newly shifted time horizon. Figure 3, presents a visualization of

the general RHC process, where an optimal input control sequence produces a minimal cost state

trajectory in the state-space, when predicted though the system dynamics function of equation

(3.1).

A key concept of RHC is that the state trajectory being tuned is generated by predicting the

system’s future states through a dynamical model. The procedure determines a set of open-loop

40

commands which, when extrapolated through this model, yield a minimum cost path over the

finite time horizon.

Remark 1: The use of RHC for an AGV inherently unifies the planning and control tasks,

because the vehicle’s future motion is continually being optimized as a sub-problem of the

overall control task. This continuous online optimization is equivalent to a separate planning

process.

The optimal control problem in receding horizon control is usually posed as the

minimization of a quadratic cost function over the time interval[,]t t T+ . For a time-invariant

nonlinear system, the optimization is subject to the dynamics, which are given is their discrete

form as,

 () () ()()1 ,x t f x t u t+ = , (3.1)

where () (),n mx t u t∈ ∈R R denote the unconstrained state and control input vectors respectively.

The dynamics function () : n m nf ⋅ × →R R R , is assumed to be continuous at the origin

with () 00,0 =f . The cost / value function for the optimization problem is typically given as

 () () () () () ()(,)
t T

T T

t
V x t u t x Qx u Ru

τ

τ τ τ τ
+

=

= +∑ , (3.2)

here bothQ and R are positive-definite symmetric constant weighting / gain matrices. The

optimal control task is to choose a sequence of future controls, which minimize the cost function

over the projected time interval. The optimal input sequence is given by:

 { }1 2 1ˆ ˆ ˆ ˆ, , , ,t t t t t Tu u u uπ + + + −= . (3.3)

41

This optimal control sequence thus has a corresponding sequence of future states, which is

governed by (3.1). The instantaneous control input to the system in RHC is then selected as the

first control vector in the sequence tπ :

 () ˆtu t u= . (3.4)

Repeating this process thus yields a closed-loop control system, because upon every time

step the current state information is updated and a new optimal control is computed. Thus by

repeatedly updating the state information, a feedback mechanism is inherently introduced into

the control scheme.

By substitution of the optimal control and predicted state sequence into equation (3.2), the

minimum cost for the given state x is established. Typically RHC is used to control constrained

nonlinear systems where: () (),n mx t u t∈ ⊂ ∈ ⊂X R U R are the constrained input and state-

space which are convex subsets of the unconstrained spaces, which include the origin at their

interior. As a required “ingredient” for stability, a terminal state constraint ()x t T+ ∈Ω is also

included in the problem, where nΩ⊂ ⊂X is a convex subset of the state-space which also

includes the origin at its interior. (The exact conditions which must be met for RHC stability are

differed to later in the chapter.) With these constraints, the optimal cost function for any given

state can be expressed as the optimization problem solution:

[]
() () () ()

() () ()()
, 1

() min

1 ,

()subject to
()
()

t T
T T

u t t T t
V x x Qx u Ru

x t f x t u t

x t
u t
x t T

τ

τ τ τ τ
+

∗

+ −
=

= +

⎧ + =
⎪
⎪ ∈
⎨

∈⎪
⎪ + ∈Ω⎩

∑

X
U

. (3.5)

42

Notice that equation (3.5) is explicitly independent of time. This is because the underlying

optimization of the system is time-invariant. In other words the optimization problem will always

yield the same result for any specific state regardless of time.

Generally the minimal cost and its associated optimal control sequence are not known

ahead of time and therefore a mechanism to determine these values is required to implement a

receding horizon controller. Most commonly, the optimization problem in receding horizon

control is solved with Quadratic Programming techniques (due to the classically quadratic nature

of the cost function) or Mixed Integer Quadratic Programming (MIQP) [BEM00] (for finite and

discrete systems). These are computationally expensive, complicated, and time consuming

processes, which limit the use of receding horizon control for electro-mechanical systems. This

limitation is primarily due to the time critical nature of the required control, i.e., most electro-

mechanical system have relatively short time constants and time-to-double instability criteria.

(Time-to-double is a widely used metric used to describe the amount of time it takes for an

unstable system to double in amplitude. The shorter the time-to-double metric is, the more

unstable the system is, and therefore it is more difficult to control.) However, RHC has seen the

most of its success in the chemical process industry where these types of system parameters can

be several orders of magnitude larger than their electro-mechanical counterparts, and therefore a

slower computation of the optimal control is acceptable.

Motivated by the need to solve for these complex optimal trajectories online for electro-

mechanical systems, the proposed heuristic receding horizon control (HRHC) uses a finite graph

search known as A* (A-Star) to find the optimal control sequence, rather than a dynamic

programming approach. A* search is a technique originally developed for Artificial Intelligence

43

applications; however the method lends itself elegantly for efficiently solving complex searches

in state-space defined systems.

Furthermore, since the optimization problem can become much more difficult for a non-

quadratic cost function, in which systems are more generally defined with the value function:

[]

() ()()
, 1

() min ,
t T

u t t T t
V x L x u

τ

τ τ
+

+ −
=

= ∑ , (3.6)

where () ()(),L x t u t is the general nonnegative intermediate cost function over the optimization

interval. A* search can be applied to such a system with little impact attributable to the

complexity of ()L ⋅ . Other optimization methods require the function ()L ⋅ to be in a specific form

(primarily quadratic).

One essential requirement of A* however, is that the state-space and input space be

discrete and quantized. (Generally it is more important to have a quantized input space. The

state-space may remain continuous, so long as a few simple modifications are made to the

search. This will be discussed in more detail in the third section.) Classically, receding horizon

control requires that the input and state-spaces are continuous in order to guarantee stability and

optimality [MAY90] (Solutions that achieve these properties exist for both discrete and

continuous systems. See [NIC98]). To apply A* to the RHC problem the notion of both stability

and optimality must therefore be modified to include results that are sufficient but nevertheless

sub-optimal. Researchers have shown that sub-optimal solutions to the classic RHC problem can

maintain overall stability [SCO99], but the idea of stability changes slightly when considering a

system controlled by a quantized input set [BRO00].

It should be noted that the consideration of quantized input control is inherently more

robust for implementation on real-world systems for a very practical reason. The modern

44

approach for control systems incorporates the use of discrete computers and their respective

electronic interfaces to the continuous system. The underlying control mechanisms are thus

discrete and quantized, i.e. program variables in memory, analog to digital converters, etc.

Therefore the inputs to the continuous systems are also discrete and quantized. Although these

facts are more often now neglected due to the increasing resolution and speed of computing and

interface hardware, by considering their effects in the control solution, a better defined and more

predictable behavior can be achieved.

The remaining portions of this chapter are broken down into sections as follows: in the

second section, basic assumptions, notation and preliminary results are discussed. The third

section defines the A* algorithm used by HRHC. In the fourth section, the required quantization

and invariant set properties needed for stability criteria are given, and the formulation of the

novel HRHC is presented in the fifth section. Dual Frequency Receding Horizon Control

(DFRHC) is shown in 6, and finally conclusions are presented.

Notation, Assumptions, and Preliminary Theorems

An essential theorem for RHC is that of the suboptimal stability conditions. When met,

these criteria provide proof that the system will maintain stability, and converge to a desired set

point. Classically, the stability of nonlinear systems has been identified with the standard

Lyapunov stability theorem. One fundamental requirement of this theorem is that the input

control u of the system is a continuous function of the state x, and hence this also implies that the

control for any particular state be unique.

The suboptimal stability results are formulated in a manner similar to that of the standard

Lyapunov stability theorem; however they allow for a non-unique and discontinuous control law.

As will be shown later in the chapter this is the case that must be considered for HRHC, because

of the finite and quantized nature of the A* search.

45

Before the suboptimal stability theorem is presented, some basic notation must first

introduce. First, the Euclidian norm of vector x is denoted as x ∈ where the dimensionality of

the vector x, is identified through the context. Any function ()α ⋅ defined on the range [)0,∞ is

considered a class K-function if it is continuous and strictly increasing, with ()0 0α = . Lastly, let

n
rB denote a closed ball set of radius r in the space n , or in another form, let the

set { }: |n n
rB x x r= ∈ ≤ .

With these concepts defined, the suboptimal RHC stability theorem is referenced from

[SCO99], and provides the basis of stability for the newly proposed HRHC scheme of this

dissertation.

Feasibility Theorem for Suboptimal RHC from [SCO99], let there exist:

1) a value function () :V ⋅ which is continuous at the origin with ()0,0 0V = and a K-

function ()α ⋅ , such that

 ()() ()() nV x t x t xα≥ ∀ ∈ (3.7)

2) a set 0
nX ⊆ that contains an open neighborhood of the origin and a K-function ()γ ⋅ ,

such that every realization of the controlled system with () 00x X∈ , satisfies () 0x t X∈ for

all 0t ≥ and

 ()() ()() ()()1V x t V x t x tγ+ − ≤ − (3.8)

3) a constant 0r > and a K-function ()σ ⋅ , such that every realization of the controlled

system with () n
rx t B∈ satisfies

46

 ()()t x tπ σ≤ . (3.9)

Then the controlled system is asymptotically stable in 0
nX ⊆ .

This theorem simply identifies that: if the value function can be lower bounded by a class

K-function, and if the change in the value function can be upper bounded by another K-function,

and the norm of the suboptimal control sequence tπ can be upper bound by a K-function, then

the controlled system will be asymptotically stable in a the local region 0X . The reader is

referred to text [SCO99] for the complete detailed proof of the theorem.

A* Algorithm and Admissibility

As stated in section I, the process of determining the open loop input sequence (3.3)

requires an optimization method in the receding horizon control scheme. One way to accomplish

this step is to conduct a search for the optimal sequence over a finite input and state-space graph.

One of the most readily used techniques to do this is known as the A* (A-Star) search. The bulk

of information provided in this section is given in [NIL71] and [NIL98]. This gives a synopsis of

the provided formulations and is used only as an introduction of the required knowledge needed

to detail HRHC. For a more complete discussion refer to [HAR68].

A* is an admissible graph search algorithm. The admissibility of the algorithm guarantees

that it will always terminate with a minimum cost optimal solution sequence if one exists. This is

a required property for implementation of receding horizon control since the optimality of a

solution is closely related to the stability of the control. The A* algorithm is a heuristically

guided search. The term heuristic means serving to aid to discover, and is derived from the Greek

verb heuriskein, meaning “to find”. The heuristic information, as will be seen, depends on some

educated or special knowledge about the type of problem being represented by the graph. This

47

information is used to guide the search in order to increase its efficiency and timeliness. The

heuristic information is represented by a heuristic function in the search algorithm. It will be

shown that if this function adheres to some simple constraints the search can be made to be both

efficient and admissible.

 Before the A* algorithm is discussed, it is first necessary define the general graph-

searching process. A graph consists of a set of nodes, where each node represents a particular

configuration in a corresponding state-space. A node in the graph can be connected to another

node in the graph by an arc. The arc defines a way to get from one node to the other and it can be

correlated to a unique transition in the represented state-space.

A graph search is a process that determines a sequence of state transitions, represented by

arcs in the graph, that allow for the transversal from one specific node to another specific node or

group of nodes. Every search therefore has a start node, which is associated with the initial state

configuration, and a set of goal nodes or single goal node, which represent a final desired

configuration.

The successors for any node in the search, i.e. the set adjacent nodes connected to the

original node by a single arc, are calculated via operations applicable to the corresponding state

configuration describe by that node. For example, for a nonlinear system defined by (3.1), any

state configuration tx , represented by node
txn , can by succeeded by a set of states 1tX + , which are

the result of applying the set of possible input commands
txU over a finite period of time. A way

to show this process is as a mapping from the given state to the set of future possible states, as

seen here:

(),

1
t

x

f x u
t tu Ux X +∈⎯⎯⎯→ . (3.10)

48

This operation is called the expansion of a node and is denoted by the operator ()nΓ . The

expansion of a node therefore produces a set of successor nodes, which can be shown with:

 ()1i iN n+ = Γ . (3.11)

As a direct requirement of the expansion process, when applying any graph search to a

linear or non-linear state-space control system, the input space (u) must be finite and discrete

(thereby implying a quantize-input system). Without a discrete input-space, the expansion of a

single node would generate an infinite number of successor nodes. Clearly this would result in an

undefined search process. By using a naturally or artificially quantized input space, the graph

search remains finite and computable. This quantization has a profound impact on the overall

control stability, the complete discussion of which is deferred to later in the chapter.

During the expansion process, pointers are set up from each successor node to its parent.

These pointers are used to trace a route back to the start node once a goal node has been found.

The functions which define the relationship of a node with its represented state and the pointer to

its parent are given here:

 () ()()1, ,i in node x t u t n −= (3.12)

() ()
() ()
() 1

i

i

i i

xnode n x t

unode n u t

pnode n n −

=

=

=

 (3.13)

where equation (3.12) is the node construction function, which requires a state, input and

predecessor node, and the equations in (3.13), provide a means to access a given node’s state,

control input, and parent node.

49

The graph structure automatically created as a result of the expansion process is known as

a tree. A tree is a graph in which each node has a unique parent, except for an origin node which

has no parent, and is called the root node. In this case the root node is clearly the start node.

Trees also have the unique property in that every path to a node in the graph is unique.

Therefore, it can be guaranteed that each node created in the tree has never been generated

before nor will it be generated again.

As the expansion process continues, each of the newly generated successors are checked to

see if any of their represented state configurations meet the required goal state criteria. If such a

goal node is found the arcs connecting the solution nodes are traced back to the start using the

pointers, and the corresponding solution sequence of state operators, which produce the path to

the goal, is generated and returned as the result.

This description is of a general graph search process. However, for the description to be

complete, another process which clearly defines the order in which nodes are expanded must be

established. One way to define this process is simply to expand nodes in the order in which they

were generated; this is known as a breadth-first search. Another way is to expand the nodes

which were most recently generated, a process called depth-first search. Both breadth-first and

depth-first are known as blind-search procedures, because they do not use any information which

is relevant to the problem being represented in the search graph.

A* search uses heuristic information to provide a more informed way to search through the

graph and its represented state-space. The heuristic information is given in the form of a

mathematical cost estimation function, which is part of an evaluation function that is used to

order the node expansion process. This evaluation function then serves the purpose of ranking

candidate nodes by which one is most likely to be on the best path to the goal.

50

The A* algorithm defines the evaluation function ()f̂ n as an estimate of the cost to reach

the goal along a path which is constrained to pass through node n. This evaluation function

therefore estimates the cost of a minimal cost path, as the sum of the estimated cost from the start

node s to n, and the estimated minimal cost from the node n to any goal node. The candidate

node which has the minimum value of ()f̂ ⋅ is thus the node with the best chance of being on the

minimal cost path to the goal, and it should be expanded next in the search.

Assuming the function (),i jk n n provides the true minimum cost from node in to node jn ,

the following cost function is defined:

 () ()min ,
g G

h n k n g
∈

= . (3.14)

Here G is a set of goal nodes. Note that this function is undefined for any node from which

the set of goal nodes is unreachable. The function

 () (),g n k s n= , (3.15)

provides the minimum cost from the unique start node to the node n, and is only defined for any

node in which a path from the start node exists. The sum of equations (3.14) and (3.15) is

defined as

 () () ()f n g n h n= + , (3.16)

and is the true minimum cost from the start node to the goal, on a path constrained to pass

through the node n.

Since A* requires the evaluation function to be an estimate of (3.16), the estimate is

defined as

51

 () () ()ˆ ˆˆf n g n h n= + , (3.17)

where ()ĝ ⋅ is an estimate of ()g ⋅ and ()ĥ ⋅ is an estimate of ()h ⋅ . Clearly ()ĝ n can be calculated by

simply summing the accumulated costs of single arc transitions from the start node through any

successor nodes and ultimately to the node n. The estimate ()ĥ ⋅ however is much more difficult

to calculate since no future knowledge of the minimum cost path to the goal exists, because such

a path is constructed only when the search is finished. At a midpoint in the search, heuristic

information or knowledge about the problem being represented must be used. Hence ()ĥ ⋅ is

called the heuristic function. This heuristic function must meet certain criteria in order to

maintain admissibility of the A* algorithm.

The A* algorithm is defined as an extension to the general graph search process, which

uses the evaluation function given in (3.17) to select the order in which nodes are expanded. The

algorithm is broken down into a sequence of steps shown in Table. Essentially, the search is

conducted via the management of two sets, one set O, is called the open set, and the other set C,

is known as the closed set. The open set maintains a list of candidate nodes which have not been

checked to see if they exist in the goal set. The closed set contains all of the previously expanded

nodes, which are not in the goal set, however must still be managed in order to allow a solution

sequence to be traced back to the start node from the goal node.

Initially the algorithm is given the start node s, and the goal set G. The search continues the

process of finding a minimum cost estimate node on the open set, and expanding the nodes until

either a solution node is found or the open set runs out of candidates. The expansion operator

()Γ ⋅ is responsible for generating successor nodes (if they exist) and setting up pointers to the

52

parent node. If a goal node is found, it is returned as the solution and it can be traced back to the

start node through the established pointers.

Up until this point in the chapter, it has only been stated that the evaluation/cost

function, ()f̂ n , must meet certain conditions in order for the A* search to find an admissible

solution sequence to the goal set. This fact is based off of two keystone theorems proved by the

creators of the A* algorithm [HAR68]. They are cited here only for reference. The reader is

referred to the previous source for detailed proofs.

A* Lemma: If () ()ĥ n h n≤ for all n, then at any time before A* terminates and for any

optimal path P from node s to a goal, there exists an open node 'n on P with () ()ˆ 'f n f s≤

This lemma establishes that if the heuristic function cost estimate is less than the true cost

to the goal for all nodes, then some node 'n , created during the A* search process, exists on the

set of open nodes, and its corresponding path cost estimate ()ˆ 'f n is less than the true minimum

cost path to the goal from the start node s.

A* Theorem: If () ()ĥ n h n≤ for all nodes n, and if all arc costs are greater than some small

positive numberδ , then algorithm A* is admissible.

The initial A* lemma is used to prove the primary A* theorem which states that if a

heuristic function is chosen that always underestimates the true cost to the goal, and if state

transitions along arcs between nodes have some non-zero cost, then the A* algorithm will always

terminate in an admissible solution if one exists.

For the theoretical approach described here, A* is used as a replacement for a classical

optimization routine, and therefore an algorithm is desired that can obtain an admissible, and

thus near optimal, solution sequence from a start state to a goal state. In order to adhere to the A*

53

theorems, a heuristic function is chosen that always underestimates the state transition cost to the

goal region, in order for this implementation of RHC to be correct. The meaning of this heuristic

function and how it is selected is very important and is the basis of the Heuristic RHC

implementation discussion in the next chapter.

Quantization and Invariant Sets

As aforementioned in the previous section, in order to use the A* algorithm in place of an

input sequence optimizer, a quantized (artificially if need be) input space must be used for the

system that is being controlled. This is because the expansion of nodes during the search must

yield a finite set of successor nodes rather than an infinite continuum of possible future states.

Since the expansion of a node is calculated by stimulating all possible input commands over an

interval of time, then the number of possible commands must also be finite and hence quantized.

This quantization will guarantee a finite set of successor states for any given configuration

represented by a node. The quantized input set U is a subset of the continuous real input space

and is defined as:

 { }1 2: , , ,m
Nu u u= ⊂…U (3.18)

where subscripts 1 through N denote the different levels of quantization.

The discussion of the effects of input quantization first requires some critical definitions

which are now introduced before the following formulations of the chapter:

Definition 1: A set of state-space configurations is considered to be zero-measure set if it

is made up of only singular discontinuous configurations, such that the measurable probability of

finding the system in that state would be equal to zero. Example: in a two-dimensional state-

space, a non-null zero-measure set would consist only of points or curves in the configuration

54

space, whereas a measurable set would consist of at least one continuous area or region.

Likewise, the three-dimensional equivalent would require some measurable volume.

Definition 2: The terminal constraint region nΩ⊂ is a controlled-invariant set for system

(3.1) iff x u∀ ∈Ω ∃ ∈U such that () ()1 ,x t f x u+ = ∈Ω .

Definition 3: If 0
nXΩ⊂ ⊆ , then the set Ω is said to be 0X attractive− iff 0x X∀ ∈ there

exists some trajectory contained in 0X that entersΩ in a finite number of steps. In addition, if

0x X∀ ∈ the trajectory can be chosen to be of length T (where T is the number of steps in the

time horizon), thenΩ is said to be 0X attractive in T steps− .

By Definition 1, it can clearly be seen that the quantized input set is indeed a zero-measure

set in the constrained input space. The consequences of a quantized input space belonging to a

continuous nonlinear system, such as an Autonomous Ground Vehicle, are far reaching in their

impact on its stability and its reachable state configurations. The classic concept of stability, i.e.

asymptotic or exponential convergence to some set-point or tracking point, is lost because the

zero-measure nature of the control prevents the system from performing arbitrary state

transitions. Instead, the system is restricted to a finite set of future states, which depend on the

levels of quantization and the number of decision steps or time horizon. This restricted

performance requires a more “practical” sense of stability, in which the system is allowed to

converge to a broad set-region in the state-space. This notion was made clear in [DEL90] for an

attempt to define more realistic stability properties for quantized systems.

Also, since the input space is quantized, the determined solution will always be sub-

optimal. The reason for this is that the true optimal solution is assumed to be a sequence, which

exists somewhere in the continuous input space. Since the input set is zero-measure, the

probability of finding the true optimal input sequence within the quantized set is zero. In other

55

words, a quantized solution cannot include every possible input and therefore one will never

practically be able to find the true minimum cost trajectory that exists somewhere in the

continuous state-space. This is reflected in a comparison of the optimal state transition cost

between the quantized input system and the continuous input system:

 () ()min , min , .
mu u

V x u V x u
∈ ∈

≥
U

 (3.19)

Figure shows the possible input space sequence over the time horizon, and that the optimal

solution values will never exactly touch the possible quantized input values. As a result, the

optimal quantized input state-space trajectory will differ from the continuous input optimal state

trajectory. This trajectory difference will result in a larger value function cost, and thus is

considered to be suboptimal.

In order to insure stability of a RHC, one solution [MAY90] is to impose a terminal state

constraint, () 0x t T+ = on the optimization problem. For a quantized input system, this would

result in a zero-measure set of possible initial states, thus rendering this stability constraint

unrealistic. Rather a quantized input system must incorporate a relaxed terminal state constraint

to include an entire controlled-invariant regionΩ . This allows the optimization problem to find a

viable solution for a feasible and significant set of initial states.

The significance of Definition 3 is that the region of attraction for the terminal state

regionΩ is only guaranteed to be local within the region 0X . That is to say the system will only

stabilize when initialized within the region 0X . This concept is identical to that described in the

feasibility theorem presented in the second section.

56

Heuristic Receding Horizon Control

Motivated by the desire to unify the planning and control tasks for an AGV, Remark 1

proposes RHC as an elegant solution to combine the two problems into one. Unfortunately,

traditional methods of optimization required for RHC hamper the ability to use the technique for

electro-mechanical systems. This is due to the time consuming nature of the online optimization,

which is usually much longer than the system response time. As a means to greatly reduce online

computation, this dissertation proposes the idea of Heuristic Receding Horizon Control (HRHC).

In HRHC, heuristic information about the problem is used to maximize the performance of an

online search of the system’s input and state spaces. This search is then substituted in place of

the usual optimization routines.

A proven algorithm for heuristic searching in a finite decision space is the A* search.

Section II of this chapter has presented the formal basis for the algorithm’s admissibility and its

general computation. The direct consequence of using the A* search for RHC is that a quantized

input space must be used for this system. This quantization in turn has further consequences on

the performance and stability of the system, which must now be characterized in a different form

when compared to classic stability metrics. These effects have been detailed in Section III, and

the critical definitions and concepts presented in that section are now required for the complete

stability analysis of HRHC.

To begin, the general cost optimization problem, subject to the terminal state constraint is

revisited, with the added constraint that the input set be that of the quantized input spaceU . Thus

the RHC optimization problem now takes on the form:

57

[]
() ()()

() () ()()
, 1

() min ,

1 ,

()subject to
()
()

t T

u t t T t
V x L x u

x t f x t u t

x t
u t
x t T

τ

τ τ
+

∗

+ −
=

=

⎧ + =
⎪
⎪ ∈
⎨

∈⎪
⎪ + ∈Ω⎩

∑

U
X

. (3.20)

Furthermore, the A* minimum node-to-node transition cost function ()k ⋅ is also defined

such that it is equivalent to that of the RHC general cost function given in (3.6), by taking

advantage of the node to state relationship functions provided in (3.13):

() () ()()

(){
,

1

, min ,
i j

j

i j k k
u n n k i

k k

k n n L xnode n unode n

subject to n n

⎡ ⎤⎣ ⎦ =

+

=

∈Γ

∑
. (3.21)

Also the expansion function Gamma is more completely defined as the union of all

generated nodes over the quantized input set U and extrapolated though the dynamics function

()f i , thus yielding:

() ()()()

()(){

, , ,

,

i i i
u

i

n node f xnode n u u n

subject to f xnode n u
∈

Γ =

∈

∪
U

X
. (3.22)

The combination of the two techniques used in HRHC, namely the A* search algorithm

and Receding Horizon Control, is based off of the key concept that the general value function

presented in (3.6), is obviously related to the A* cost-to-go function, which is given in (3.14).

 Lemma 1: The RHC optimal value function ()()V x t∗ subject to the quantization

constraints ; ()u x t T∈ + ∈ΩU is equivalent to the A* cost-to-go function ()ih n when the

58

function (),i jk n n is defined as in (3.21) with the additional condition that the terminal

state ()x t T+ is represented by node jn and | ()g G xnode g∀ ∈ ∈Ω .

Proof: Given that () ()kxnode n x τ= , implies node kn represents the system state at arbitrary

timeτ . Since ()kh n is the minimum cost from node kn , to the goal region G, via the expansion

operator ()Γ ⋅ , then the cost accumulated over each state transition arc to the goal will equal that

of the identical state transition sequence calculated via (3.6), and since ()Γ ⋅ is constrained to

expand only quantized inputs through the mapping (3.10), then the state transitions will be

restricted to the quantized permitted inputs used in the optimization problem(3.20). Therefore,

the A* cost-to-go function is written more completely by the equations:

() () ()()

(){
,

1

min min ,
j i j

j

i k kn G u n n k i

k k

h n L xnode n unode n

subject to n n

∈ ⎡ ⎤⎣ ⎦ =

+

=

= Γ

∑
. (3.23)

It can be deduced from this nested minimization of the cost function that the overall

minimum cost via a set of node input commands ,i ju n n⎡ ⎤⎣ ⎦ , will be the same for a single

minimization subject to the additional constraint jn G∈ . Thus the nested minimization can be

written as a single minimization in the form:

() () ()()

()
,

1

min ,
i j

j

i k k
u n n k i

k k

j

h n L xnode n unode n

n n
subject to

n G

⎡ ⎤⎣ ⎦ =

+

=

⎧ = Γ⎪
⎨

∈⎪⎩

∑
 (3.24)

59

In addition, if j is chosen such that () ()jxnode n x t T≡ + , or in other words all terminal

nodes at generation j represent the system at time t T+ , and since the expansion operator is

constrained to quantized input extrapolations through the dynamics function (3.1), and limited to

the constrained state-spaceX , then the constraints of (3.24) are identical to (3.20), and thus

 () ()()*
ih n V x t= . (3.25)

Theorem 1: If the A* heuristic function ()ˆ
ih n is selected such that () ()*ˆ ()ih n V x t≤ then the

algorithm will terminate with a solution node, which when traced back to the start node

represents an input decision sequence with the equivalent optimal value function V*(x) subject

to the constraints of equation (3.20).

Proof: From lemma 1, it is clear that the optimal value function and the A* cost-to-go

functions are equivalent. The proof of Theorem 1 then follows from the A* admissibility

Theorem referenced in the third section. If the heuristic function is selected such

that () ()*ˆ ()ih n V x t≤ , then obviously () ()ˆ
i ih n h n≤ , and therefore by the A* Theorem it is known

that the algorithm will terminate with an admissible solution, and so the corresponding state

transition sequence will be the equivalent of one determined with the quantized and constrained

optimization problem of (3.20).

The stability criteria of HRHC follow that of the suboptimal RHC (Feasibility Implies

Stability) theorem referenced in Section II. Since the A* quantized optimal solution sequence has

to be suboptimal compared to the continuous input optimal solution, then the conditions that

HRHC must meet in order to maintain system stability must be relaxed to those of the

suboptimal requirements. The first condition of the suboptimal RHC theorem is satisfied by the

design of the cost function, which can be chosen such that it is lower bounded by a class K-

60

function. The second condition is also easy to satisfy by imposing an additional constraint on the

search whereby the cost values along the solved trajectories must decrease by at least

() ()(),L x t u tμ where (]0,1μ∈ is just a constant. Lastly the third criteria is usually satisfied by

assumption, however as will be discussed in the next chapter this constraint is less important for

quantized systems where one can find some controlled-invariant set Ω , or even less important,

when the system is simply turned off in the terminal state region. The main purpose of HRHC is

to find a fast solution that will drive the system towards the goal region. With parts one and two

of the feasibility theorem met, that is all one needs to do the job.

An outline of the HRHC algorithm is given in Table 3-2. The basic process is to first

generate the A* start node based off of the system’s current state, input and a null parent node

pointer. Then an A* search is conducted, in order to find the least cost path from the start node to

the goal region. The search differs slightly from the one outlined in Table, in that the goal test

checks the state represented by the node for membership in the goal region setΩ . Also, the

solution node is not returned rather it is traced back to find the initial optimal input command in

the sequence. If a solution doesn’t exist then the controller faults and external techniques could

take corrective action.

The outlined algorithm only represents a single iteration of the HRHC control loop, and

therefore the process is repeated online at a fixed interval, with state feedback information and

any changes to the goal set if they exist.

Dual-Frequency Receding Horizon Control

For systems capable of providing feedback information at a rate higher than that required

for predictive planning and control, it may be desirable to take advantage of the feedback in real-

time, rather than postponing any state updates until the next RHC optimization iteration.

61

Furthermore, since RHC requires the prediction and optimization time steps to equal that of the

state update period, if the update frequency is very high, then too many intermediate steps to the

desired horizon time may be required.

The purpose of Dual-Frequency Receding Horizon Control (DFRHC) is to allow predictive

optimization out to a desired time horizon, while simultaneously reducing the total number of

planning steps and integrating feedback information at its real-time rate. The method works by

predicting the system state response through a series of constant input commands, much in the

same way classic RHC works. The difference is that the constant input commands are held over

a time step period which is a multiple of the shorter feedback period. For example, if the

feedback period is one millisecond, then the optimization prediction period may be five

milliseconds. This lower frequency prediction sequence is then optimized and the first command

in the sequence is executed for one millisecond. Then the process repeats, by again predicting the

system’s response through a chain of five millisecond input commands out to the time horizon.

Figure diagrams the general DFRHC process. Shown there is a three step planning sequence out

to the time horizon T, where the prediction period is denoted as p. This planning period p is just

some constant integer greater than the feedback period, which is just one for the example. The

first input in the control sequence is then applied to the system for one feedback cycle, and the

lower frequency optimization process is repeated to determine a new command.

The name Dual-Frequency, comes from the fact that the optimization prediction steps are

planned as if they are to be executed at one frequency, when actually only the first command in

the sequence is used as the system input for the feedback cycle, which is operating at a second

fixed frequency.

62

This method has several advantages, when compared to classic RHC. One of the benefits is

the ability to maintain optimization computability in real-time, over an extended time horizon.

The reason for this is that since the time of computation increases exponentially with the number

of planning steps, by reducing the number of steps out to the horizon one can decrease

computation. Because of this, the method also allows for a longer time horizon, which increases

the region of attraction for the controller, and allows for a larger envelope of system operation.

Another important lead is that maintaining feedback at a high rate, allows for faster disturbance

rejection, and increases robustness with respect to model inaccuracies, because of the system’s

ability to react to unpredicted changes faster.

A disadvantage however is that because there are fewer planning steps, any obtainable

state trajectories are more constrained. Therefore, this will result in a higher cost value function,

and will produce results less optimal than a high frequency input sequence.

An illustrative example that explains the strategy behind DFRHC can be presented in the

form of an investment planning problem. Imagine for example a scenario where some investor is

planning a five year investment policy. The classic RHC method would perhaps have the plan

call for purchases and sales once a year and these transactions would be planned and predicted

over what the investor thought the market was going to do for the next five years. However, if

there were a market crash at the midpoint of the year, the initial strategy would not allow for

rapid transactions to correct for the unforeseen crash. The investor would have to wait for the

next year in order to plan and execute new transactions.

A better strategy would be to plan transactions over the long term, and reevaluate those

transactions on a frequent basis. To reduce complexity, the investments would not be planned at

the same frequency as the reevaluations, but would rather represent only a broad strategy over

63

the five year period. This way, if a market crash did happen, the frequent reevaluations would

allow for a rapid correction in the long term plan. This is the essence of DFRHC, changes to the

plan can happen fast as new information becomes available, and this way if a large unpredicted

event happens it can be accounted for right away.

The computation process of DFRHC is nearly identical to the classic RHC with the

exception that the intermediate predicted states are calculated recursively through the dynamics

function (3.1), over each individual planning step. If the planning period is specified as p state

update periods the calculation of the a future state ()x t p+ given a constant input u is

 () ()()()1 2 ... (), , ,px t p f f f x t u u u+ = , (3.26)

where subscripts 1 through p simply represent the iteration of the recursively calculated state

update function.

It should also be noted that DFRHC is very easily incorporated into HRHC since the only

change to the calculation is that the predicted states must be calculated recursively as in function

(3.26). This requires only a trivial change to the node expansion function.

Conclusions

This chapter has introduced two new and novel RHC advancements. The first is HRHC, in

which the general strategy is to employ heuristic information about the control problem being

represented in order to maximize the performance of the required online optimization problem.

This is done by replacing any usual optimization methods, which are often too slow for electro-

mechanical systems, with an A* search algorithm. This algorithm is designed to take advantage

of heuristic information during the search process for any system defined in a state-space.

The second technique is DFRHC, where the general concept is to optimize a state

trajectory over a set of extended period planning steps. The steps are planned at a frequency

64

lower than that of the feedback update frequency, and then the process repeats after a single

feedback iteration.

Both methods are easily combined together, which allows for a combined effect that

further increases optimization performance to an extended time horizon. This combination is

simple to do because the expansion operation in the A* search is simply changed to extrapolate

state trajectories over a repeated single input command.

One very important item not discussed in this chapter is the ability to use RHC methods to

plan AGV motion through an obstacle riddled environment. As per Remark 1 it should be

possible to use RHC to execute simultaneously planning and control. However, in order to

incorporate motion optimization around obstacles or though some other complex structured

environment, then some non-trivial changes must be made to the setup of the RHC problem.

These changes and their effects on system stability and performance are the focus of the

following chapter.

65

Table 3-1: The algorithm AStarSearch is used to find an admissible solution sequence to a goal
region from a given start node. It requires the definition of an admissible cost
function, and expansion process, in order to successfully execute.

Line Action Comment
1: Algorithm AStarSearch(s, G):
2: O s= // Let the open set equal the start node
3: C =∅ // Let the closed set equal null
4: while O ≠ ∅ do // While the open set is not empty
5: ()ˆargmin i

i
n f O= // Find the minimum cost estimate node on open

6: O O n= − // Remove the node from open
7: C C n= ∪ // Put the node on closed
8: if n G∈ then // If the node is a member of the goal set
9: return n // Return the solution node
10: endif // End of if statement
11: ()O O n= ∪Γ // Expand the node and put successors on open

12: endwhile // End of while loop
13: return ∅ // Return no solution found

66

Table 3-2: This table represents the algorithm for a single HRHC iteration. This process is
repeated online at a fixed rate, with feedback state, input and goal information.

Line Action Comment
1: Algorithm HeuristicRHC(x, u,Ω):
2: (), ,s node x u= ∅ // Initialize start node to current state and control

 // Begin to conduct an A* search
3: O s= // Let the open set equal the start node
4: C =∅ // Let the closed set equal null
5: while O ≠ ∅ do // While the open set is not empty
6: ()ˆargmin i

i
n f O= // Find the minimum cost estimate node on open

7: O O n= − // Remove the node from open
8: C C n= ∪ // Put the node on closed
9: if ()xnode n ∈Ω then // If the node state is a member of the goal set
10: endwhile // A solution has been found, so end the search
11: endif // End of if statement
12: ()O O n= ∪Γ // Expand the node and put successors on open

13: n =∅ // Reset the node to null
14: endwhile // End of while loop
 // Now trace back the solution
15: if n ≠ ∅ then // If a goal node has been found
16: while ()p n ≠ ∅ do // Loop back until the start node is reached

17: ()n p n= // Set the current node equal to its parent

18: endwhile // End of while loop
19: return unode(n) // Return the initial optimal control input
20: else // Else no solution has been node found
21: return ∅ // Return null to indicate a fault
22: endif // End of if statement

67

Horizon

Time

()u t

t+1t t+Tt-1

Horizon

Time

()x t

t t+T

Horizon

Time

()u t

t+1t t+Tt-1

Horizon

Time

()x t

t t+T

Optimal Input Controls Optimal State Trajectories

() ()(),f x t u t

() ()(),f x t u t

Repeat Optimization Online

Figure 3-1: Receding horizon control is the optimization of an open-loop sequence of system

inputs, in order to produce a minimal cost state trajectory and then repeating the
process online. This diagram shows a typical piecewise constant input sequence with
the corresponding measured and predicted state trajectories.

68

Horizon

Time

()u t

t+1t t+Tt-1

Horizon

Time

()x t

t t+T

Input Controls State Trajectories

() ()(),f x t u t

Continuous System:

Quantized System:

Key:

Suboptimal

Optimal

Figure 3-2: The quantization of the system’s input space prevents the optimization problem from

achieving true optimal performance. The true optimal control input lies somewhere in
the control space, but the probability of finding that sequence in the quantized input
space is very low. Hence, the quantized system will always achieve only a suboptimal
state trajectory.

69

Horizon

Time

()u t

t+pt t+Tt-1

Horizon

Time

()x t

t t+T

Horizon

Time

()u t

t+pt t+T

Horizon

Time

()x t

t t+T

Optimal Input Controls Optimal State Trajectories

() ()(),f x t u t

() ()(),f x t u t

Repeat Optimization Online

t-1

Figure 3-3: This diagram identifies the basic DFRHC scheme. Notice that there are two distinct

time frequencies, one for state feedback and re-optimization, and the other for the
prediction steps to the horizon. The process optimizes an input sequence, predicted
with some input time period p, and then repeats the optimization after state
information has been updated after a single feedback period.

70

CHAPTER 4
APPLIED APPROACH AND IMPLEMENTATION

Introduction

The need to implement online planning and real-time control on the CIMAR NaviGator

AGV was the driving motivation behind the work presented in this dissertation. Using the

theoretical concepts and mathematics described in Chapter 3, simultaneous planning and control

was put into operation on the vehicle through the use of Heuristic Receding Horizon Control

(HRHC), combined with Dual-Frequency Receding Horizon Control (DFRHC). Both of which

are the new and novel theoretical concepts presented by this dissertation.

The NaviGator has served, as the basis platform for implementation and testing of these

concepts. In the overall NaviGator control system, the implemented novel planning and control

task is compartmentalized into a software component called the Reactive Driver (RD). Figure 4-

1 shows a block diagram of this control system with the RD component residing within the

Intelligence element. The RD allows the planning and control functionality to be decomposed

into a separate compact module. By breaking the overall system down into smaller components

such as this, the implementation of other tasks and capabilities like environment sensing, and low

level vehicle actuation, becomes less complicated because they are only loosely coupled to the

rest of the system.

The RD is responsible for closing the loop between sensors and actuators. As such

information sensed from the environment is first processed by feedback components called

Smart Sensors. These sensors process information from sensed raw data and normalize it into a

standard form which can be easily fused with similar data from other Smart Sensors. The exact

format of and information represented by this data will be discussed in the second section of this

chapter. After the sensor data is fused together by an Arbiter component, it proceeds to the

71

Reactive Driver, where the RHC algorithm of this dissertation attempts to find actuator

commands which regulate the vehicle onto a predetermined motion path. This flow of

information is inline with the sense-plan-act scheme mentioned in chapter I, since it is repeated

continuously throughout the systems online operation, and also because the planning step is

inherent to the RHC functionality of the Reactive Driver.

The use of environmental sensors within the system leads to one major issue which is not

theoretically addressed in the previous chapter. Namely the issue that comes into play during

implementation is Obstacle Avoidance (OA). The introduction of obstacles into the vehicle’s

task and configuration space has severe repercussions on the system’s stability and performance.

For RHC to work, it is essential that the OA problem be cast into a form that allows the

optimization procedure to find a valid control solution that will guide the system safely through

the state space. This requires the obstacles and environment to be represented in a way that

elegantly blends the OA problem with the trajectory or state regulation problem during the online

computation. In turn, the value function must be modified to reflect the inclusion of additional

environmental or state-environment interaction costs.

An essential section of this chapter addresses in detail the issues of OA. It is a vital

discussion because OA capability for AGVs is what allows them to operate and execute different

missions through their often cluttered and unpredictable environments. Since knowledge of the

environment structure is usually incomplete prior to task execution, the robotic vehicle must

have some OA functionality. This also means that the system must also have the ability to sense

any obstacles or other undesired states, and a way to represent what is sensed so that it can be

used by other processes that plan the vehicle’s motion. This ability, on the NaviGator vehicle, is

implemented as mentioned, within the Smart Sensor components, and is not the focus of this

72

dissertation. However, the output of those sensors is consumed by the Reactive Driver

component of the system and therefore needs to and will be discussed.

Aside from the ability to sense disagreeable state configurations, an AGV can also benefit

from the capacity to sense desirable states, terrain or conditions. This allows the system to

maximize the chances of successful task execution. An example of this would be sensing a road

adjacent to the vehicle’s current path and then switching onto driving that road if it were more

conducive than the current path. This ability, like OA, can also be incorporated into the RHC

task, assuming that the desirable state configurations are represented in a way that allows such

information to be combined with state regulation costs, within the optimization routine. The RD

component in conjunction with the NaviGator’s Smart Sensors, allows for this behavior, and is

implemented in unison with the OA behavior. The ability to both avoid obstacles and track

desirable terrain is inherent in the design of the Smart Sensor / Reactive Driver interaction, and

will be addressed in detail later in this chapter.

Obstacle Avoidance

From Remark 1 in the previous chapter, it is suggested that RHC applied to an autonomous

vehicle system will allow for unified motion planning and control. If the optimization problem is

cast correctly, this should inherently include an OA capability. However, it should first be

considered that the regulation of a vehicle onto some desired state motion structure, while at the

same time avoiding any undesired regions in the configuration space (due to obstacles, or other

high risk hazards) is by nature contradictory. For example, if the system is required to drive

along a particular geometric path, avoiding an obstacle in the way of that path also demands that

the vehicle depart from the initial intended trajectory. This behavior, when viewed from the

classical control sense, is unstable with respect to the goal. Error signals used for path regulation

would inherently increase during the avoidance maneuver. However, the overall behavior, when

73

viewed from the system user, seems desirable and in a new sense “stable.” The implications of

this simple concept are far reaching in their impact on the notions of system stability and

performance. To simply put that the idea of stability requires the continuous minimization of all

error signals for all time is no longer valid. The desired performance of the system, and what

could be considered “stable behavior,” now involves the movement around and away from the

original goal structure.

The essence of these concepts is that stability, in the presence of obstacles, requires the

minimization of a properly designed value function, not the minimization of only state error

signals. This therefore suggests that unstable behavior is coupled to the sub-optimality of the cost

function and open-loop input sequence of the RHC process. Meaning that if the value function,

which incorporates a cost component due to environment, and obstacles, is not minimized then

the probability of unstable behavior such as obstacle collisions increases.

A value function designed to provide both stable control (motion regulation) and stable

behavior (obstacle avoidance), must incorporate both classic state regulation costs, and a state

environment cost. The state environment cost adds a new term(s) to the value function, which

was not discussed in Chapter 3. This new component describes the cost associated with the

system occupying a given state in it operating environment, which in general can be attributed to

obstacles, terrain quality, etc. Equation (4.1) presents a new cost function form with an additional

term ()P x , which describes the added cost due to the system’s state within its environment. It

effectively trades off state error signal value with obstacle avoidance value. Meaning that if the

cost of occupying a given state due to ()P x increases, the overall optimization will allow for a

slight increase in the remaining two terms in order to reduce the cost due to the environment. The

remaining terms are identical to the value functions discussed in the previous chapter. The cost

74

due to error in motion regulation is expressed within ()Q x , and the cost due to input command is

given by ()R u . Notice that both ()P x and ()Q x are both functions of the systems state. The

difference in these two functions is that, ()Q x is a mapping of state to error signals (which are

based upon a predetermined motion structure) and ()P x requires a mapping of system state to

environmental cost.

 ()() () ()
u

V x P x Q x R u= + +∑ (4.1)

The addition of the new term ()P x to the RHC value function has a significant impact on

the Feasibility Theorem for Suboptimal RHC referenced in the second section of Chapter 3. Of

the three conditions of that theorem, only one can be partially satisfied when the state

environmental cost ()P x is included.

The first condition states that the RHC value function must be lower bounded by some

class K-function ()α ⋅ . Assuming the term ()P x is designed such that it is always positive, this

condition can still be satisfied, since it is simply adding a positive number to the remaining

portions of the function which can already be lower bounded by ()α ⋅ . However, the condition

also states that the value function is equal to zero at its origin. Since ()P x , must be allowed to

have a value greater than zero for cases where obstacles are present at the origin, this condition

cannot be fully satisfied.

The second condition states that the cost function V(x) must be monotonically decreasing

for successive time steps of the RHC solution sequence. This criterion cannot be satisfied when

obstacle avoidance is included in the optimization problem. The reason for this is that in order to

75

avoid an undesirable state during motion tracking, additional cost may be incurred on by the

value function in order to produce a desirable avoidance maneuver.

Finally the third condition cannot be guaranteed since the uniqueness of the control input

for any given state can no longer be certain.

A simple example that demonstrates all of these cases is depicted in Figure 4-2, which

shows a vehicle attempting to track a straight line and a single obstacle in way of that track. In

this case it is possible to find two opposite but equal solutions to the RHC problem. Therefore, it

is not possible to guarantee the uniqueness of a control solution or to ensure the control input is a

well behaved function of the system’s state, when obstacle or environment cost is included in the

RHC value function. Also, since the cost of the value function inherently increases during some

OA maneuvers such as the one depicted in Figure 4-2, it is not possible to satisfy the decreasing

cost constraint which is required to prove feasible stability.

Although it can be shown that cases may exist which disagree with the criteria presented

by the Suboptimal Feasibility Theorem, under nominal conditions they may still be satisfied

whilst including obstacle avoidance as part of the RHC optimization. In addition, for all cases in

which the state environment cost function ()P x is zero, such as when no obstacles are present in

the immediate environment, then the value function simply reduces to the classic RHC form, and

all of the stability criteria may be applied as usual. However, for simplicity in this

implementation, the three criteria are not explicitly verified. Rather, the control solution is

guaranteed to be admissible, by designing a valid A* heuristic function. This topic is discussed

in detail in the next section.

The ability to formulate the environmental cost component ()P x online, allows the RHC

optimization problem to dynamically modify the vehicle’s predicted motion, in order to avoid

76

obstacles or drive on more desirable terrain. This online cost mapping is a functionality that must

be provided by exteroceptive sensors since the required information is originating from the

vehicle’s surroundings. Thus information provided by those sensors must be in a form that

effectively represents the cost of occupying a given state in the workspace. For implementation

on the NaviGator, this information is provided in a form known as a traversability Grid. The

traversability grid models the system’s workspace as a raster image in which each pixel contains

a value that estimates how desirable the terrain and space contained within that pixel is for the

vehicle to occupy. The traversability value is effectively a gain like parameter that allows for a

tradeoff between input effort or motion error and quality of terrain. The worse the terrain, the

more willing the RHC is to add error cost to the determined path in order to circumvent that poor

area.

Obstacles are represented by a traversability grid in much the same way as they are in an

Occupancy grid. Both positive and negative obstacles (such as pot holes) within the environment

can be mapped equivalently to poor traversability regions. In fact, this is one feature of the

traversability grid that cannot be effectively represented by an Occupancy grid. In an Occupancy

grid, only information about the “occupied” or “free” state of a pixel is given, whereas a

traversability grid can encapsulate these pieces of information and also describe terrain quality.

This means that any type of terrain can be mapped into traversability space without having to

convey anything specific about the given topography. In the traversability sense, positive

obstacles appear the same as negative obstacles or steep slopes. Traversability also allows for the

evaluation and scoring of unoccupied space. For example, pavement can be classified as more

traversable than sand, grass or gravel. Therefore the vehicle is able to select the best possible

path for motion when it is presented with different types of terrain.

77

The units of measurement for the values contained within the traversability grid must also

be carefully considered. As aforementioned, the values are used to tradeoff occupying a given

space with motion structure error and or input effort. As such, the grid values are essentially

dimensionless, and do not describe an amount of travel energy required or probability of safe

motion, etc. This is because values with these types of physical units would inherently change as

a function of the system’s complete state (i.e. speed and orientation), and would require much

more information about the environment to be mapped by sensors. It would also require a more

complex ()P x cost function. Therefore, traversability as discussed in this dissertation is only

considered as a qualitative parameter that can simply and effectively allow the Reactive Driver

component to make decisions about the desired vehicle motion. Figure 4-3 presents the

traversability grid concept. In this image a model of the surrounding local environment is

mapped into the corresponding traversability space. The area outside of the vehicle’s

commanded operating space is all mapped to poor (shown in red) traversability values. The

values go from shades of red, which are poor, to shades of green and blue, which are desirable.

In implementation on the NaviGator system, the traversability grid format for all sensors

feeding the Reactive Driver component is a 121 by 121 pixel rasterized image with a resolution

of 0.5m by 0.5m per pixel. Each pixel in the grid contains is a 4-bit integer, which can represent

a traversability value or one of several special case values. The grid is designed such that the

vehicle is always positioned at the center of the image, and as the vehicle moves the values

within the image are shifted so that the vehicle remains in the center. When shifted, new values

around the edge of the image are updated with new data from sensors. The coordinates within the

image are easily mapped to local vehicle coordinates and therefore the traversability grid serves

as the environmental cost function ()P x , for implementation in the RHC value function.

78

However, since the orientation of the vehicle at each pixel within the image is not considered,

only the vehicle’s position within the grid is used to determine environmental cost, and not its

full state (position and orientation).

The complete value function used for implementation in the RD component, which

includes traversability, cross track error, and heading error, has been designed as:

 () ()() ()() ()()()2 2 2
() * *

t T

trav herr
t

V x t k Trav x k Herr x XTrack x
τ

τ τ τ
+

=

= + +∑ . (4.2)

Where the sub function ()()Trav x τ accounts for the environmental cost due to obstacles

and terrain quality, and has a corresponding optimization weight travk . The remaining two sub

functions provide transformations of the system’s state into path tracking error coordinates, and

allow for optimization of the vehicles motion tracking of a desired trajectory. The heading error

function, ()()Herr x τ is multiplied by an optimization weight herrk , whereas the cross track error

function, ()()XTrack x τ is not altered. This allows for normalization of cost units, using the

cross track error as the reference base for overall value. Figure 4-4 presents a geometric

representation of the tracking error system measurements, Herr and XTrack.

Thus the implementer is free to modify the remaining weight factors to tradeoff

traversability, and heading error with cross track error as a baseline. Note that input effort /

control value has been neglected here since there is not term in the function penalizing it. It has

been found through extensive testing that desirable results are obtainable without control effort

in the cost function, and that the overall optimization is less constrained to find an appropriate

solution with the value function provided in equation (4.2).

79

For implementation of HRHC where the A* search is used in place of a classic

optimization routine, the depth cost function ()G n , must be specified. Since the general value

function provided in (4.2) specifies the cost structure for the underlying problem, a variation of

that function is used as the depth function:

() ()()
()()

()()
()()

2

2

2

*

*

i trav i

herr i

i

i

G n k Trav xnode n

k Herr xnode n

XTrack xnode n

G pnode n

=

+

+

+

 (4.3)

 ()ipnode n∀ ≠ ∅ .

In this form the depth function is defined recursively, and is dependent upon the depth cost

of the parent of node in . For the root node ()s the depth function is simply:

 () 0G s = . (4.4)

Admissible Heuristics for HRHC

The cost function presented in the previous section provides a means for the RHC

implementation to optimize both obstacle avoidance and motion tracking online. In the previous

chapter the new technique, Heuristic Receding Horizon Control (HRHC), offers a means to use

heuristic information and the A* search algorithm to implement the optimization task within the

overall RHC scheme. One essential requirement for HRHC then is to establish a heuristic

function which can estimate a cost-to-go for the value function provided in the second section of

this chapter. As will be shown in this section the heuristic function can take on many different

forms, each with various strengths and weaknesses. Finally the form decided upon for

implementation in the NaviGator’s RD component will be presented.

80

Cost functions for a typical RHC and a typical A* implementation tend to be very different

in nature. Classically, A* state to state transition or “arc” cost values are relatively constant or

simply depend on the transition distance, whereas RHC state transition costs decrease as the

system approaches the origin or goal. Regardless of this difference, the general method or

technique for HRHC allows for a total cost function f (n) to take on any form, so long as it

satisfies some basic criteria. First, the arc or state transition cost must always be greater than

zero. Since the value function provided in (4.2), is positive definite and provides this cost

measurement, the first condition is satisfied. The second condition requires that the heuristic

function ()h x be an underestimate of the total cost-to-go for the provided value function.

Therefore, careful consideration for the heuristic function must be taken in its design to ensure

that it is upper bounded by the true optimal total to the goal. If this condition is violated then the

algorithm A* is no longer admissible and may determine an invalid solution sequence.

A good approach to heuristic function design is to analyze each term in the RHC value

function, and to establish a heuristic estimator for each of those terms. Then all of the partial

heuristics can be summed to obtain the complete heuristic function.

For implementation within the RD component on the NaviGator, it is desired to find a

heuristic estimator that approaches the true minimum cost solution over the time horizon for

equation (4.2). In analyzing that function term by term, it can be seen that the first term provides

the cost due to environment, which is directly related to the mapped traversability value. The

ideal heuristic for this term would provide a cost sum over the remaining time interval with the

true traversability encountered along the optimal state trajectory. Since that trajectory is not

known, an estimate or prediction of the encountered traversability must be made. Also, to adhere

to the admissibility constraint of the A* search, the traversability estimate must not exceed the

81

optimal solutions value, so a conservative approach must be taken. In other words, the predicted

traversability cost must be less than the actual future remaining time traversability cost. One

simple heuristic function that estimates the future incurred traversability cost, at a given time

(τ), within the HRHC search is:

 () ()2ˆ mintrav trav x

t Th k Trav xττ
τ ∀

+ −⎛ ⎞= ⎜ ⎟Δ⎝ ⎠
, (4.5)

where τΔ is the time step period of the search. This heuristic estimates that the total future cost

due to traversability is equal to the minimum traversability value of any possible state, multiplied

by the traversability cost weight, and the number of future time steps. This function is the

heuristic estimate used by the RD component in implementation. It provides a fast method for

calculating an estimate which is guaranteed to be upper bound by the true future traversability

cost. It is fast because the minimum traversability need only be calculated once, and then that

minimum value may be applied for calculating each search node’s heuristic cost. Other heuristics

which are more informed about the underlying system dynamics and problem are able to

calculate a more accurate heuristic. However, these functions tend to be much more demanding

since the future minimum traversability is truly a function of the systems state and must be

recalculated for each search node. Thus the time saved in reducing the total number of explored

nodes, by using a better heuristic, is lost since the heuristic itself takes much more computation

time, and so more advanced heuristics are not worth implementation.

Heuristic estimates for the heading error and cross track error cost components are both

calculated directly from the system’s state at any given node within the A* search. Unlike the

traversability estimate which must have knowledge of the systems surroundings, and therefore

must perform a separate search to find the future minimum traversability, the system state only

82

dependent costs of heading and cross track error may be calculated by pure geometric and

kinematic constraints.

For the heading error heuristic design, the total incurred cost may be lower bounded by

knowledge of the vehicle’s minimum turning radius constraint, and a constant speed assumption.

In more detail, since the NaviGator is a front wheel steered vehicle, there is a minimum turning

radius that the platform is able to drive. At a given speed (the one at which the HRHC search is

attempting to optimize motion) there exists a maximum turning rate for the vehicle. By

calculating this maximum turning rate at any given node’s state in the search, the future incurred

heading error cost may be estimated with the equation:

()() ()()

()()

2

min

min

ˆ *
T

herr herr
vh x k Herr x

r

r Herr x

v

γ τ τ

τ τ γ

τ
γ

= +Δ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

∀ <

∑
. (4.6)

The above equation assumes that the heading error will decrease linearly at a rate equal to

the maximum vehicle turning rate, where v is the vehicle’s desired speed, and minr is the

minimum turning radius. The estimated future cost is therefore at least the summation of the

minimum possible heading errors, up until the point at which a heading error of zero is possible,

and from thereon it is assumed to remain zero. For all time greater than the time at which the

heading error would be equal to zero, the future incurred cost is assumed to also be zero or

()()

()()
min

ˆ 0herrh x

vHerr x
r

τ

τ τ

=

∀ < Δ
, (4.7)

because it is assumed that the heading error will become zero and remain zero before the next

search time at τ τ+ Δ , and therefore no future cost will exist.

83

The cross track error heuristic is calculated in much the same way as the heading heuristic.

For this estimate, it is assumed that the vehicle’s cross track position will decrease as if it were

headed perpendicularly towards the desired motion path. This clearly will lower bound the true

future cost since the vehicle must approach the path at an angle near parallel with a line tangent

to the path, if it is to converge onto it. To calculate the heuristic then, a summation of the

minimum future possible cross track errors is made. The following equation makes this

calculation, within the RD component, and assumes that the vehicle’s desired speed will remain

constant

()() ()()()

()()

2
ˆ

T

xtrackh x XTrack x v

XTrack x

v

γ τ τ

τ τ γ

τ
γ

= +Δ

= −

∀ <

∑
. (4.8)

Since the actual accumulated cost given in the value function (4.2) does not multiply the

cross track cost by a weighting factor, then neither does the heuristic given in (4.8). As in the

heading error heuristic it is also assumed for the cross track error, that once the error reaches

zero, it will remain zero for all future time. Therefore for the heuristic estimate, the summation

of future estimated cross track errors is only defined for those with positive values, and for the

cases in which the future cross track error is zero the heuristic is also zero and is given by:

()()

()()

ˆ 0

*

xterrh x

XTrack x v

τ

τ τ

=

∀ < Δ
. (4.9)

 The total heuristic function is simply the summation of the partial heuristics given above

and can be expressed as:

 ()() ()() ()() ()()ˆ ˆ ˆ ˆ
trav herr xtrackh x h x h x h xτ τ τ τ= + + . (4.10)

84

The above heuristic function provides a lower bound estimate of the true future incurred

cost of the optimal state trajectory, and therefore should allow for the A* search to yield an

admissible solution. The solution obtained should satisfy the basic feasibility criteria, necessary

for stable Receding Horizon Control, especially under obstacle free circumstances. It should be

noted that there seems to be a strong connection between the heuristic criteria of A* and the

second feasibility implies stability criterion. Essentially if the heuristic function is not admissible

then it may not always underestimate the true future cost to goal. In that case, the solution will

not be admissible and will almost certainly violate the second stability criterion. This simple

connection implies that an admissible heuristic function may account for the majority of the

HRHC algorithm’s stability and control effectiveness.

Reactive Driver Implementation

The Reactive Driver (RD) component of the NaviGator’s overall control system houses the

HRHC implementation of this thesis. Along with the cost functions and heuristics detailed in the

previous two sections, there are a number of important functions of the RD that merit discussion,

and complete the system integration puzzle, which allows for the RD to provide true

functionality in the real-world system.

As shown in Figure 4-1, the RD is one of many components which makeup the complete

autonomous control system. Each of these components is designed as per the Joint Architecture

for Unmanned Systems (JAUS), and each houses a core functionality that is defined by JAUS.

JAUS is a standard which specifies a basic structure and methodology for unmanned and

autonomous systems design and integration. It is intended to aid in the integration of and to

support interoperability amongst many heterogeneous unmanned systems originating from

different developers. In addition to the core component architecture, JAUS primarily offers a

means for common messaging and information exchange among its intended hierarchical

85

network of systems, subsystems and computing nodes. This messaging system is what allows the

RD to communicate with and control surrounding components in the NaviGator’s control

system.

Like all components implemented on the NaviGator, the RD extends a core JAUS

component template and a corresponding JAUS library, which are implemented in the C

programming language. The software is built upon the Linux and GNU tool-chain, with its

extensive set of libraries and compilation utilities such as the GNU C Compiler (gcc). This base

understructure provides each of the components operating on the NaviGator a means to support

timing processes, inter and intra nodal communication, as well as multithreading capability.

The RD component has been implemented to run on a computing node which is made up

of a Gigabyte motherboard with AMD CPU, 1 GB of RAM, and a 4 GB Compact Flash solid

state hard drive. The computing node runs the Linux Fedora Core 3 operating system, which

allows for advanced software development as well as execution directly on the NaviGator. Also,

the node is connected via a high speed Netgear Ethernet switch to seven other identical

computers onboard the NaviGator. Each one running its own set of tasks and processes for the

vehicle’s control system, and all intercommunicating via JAUS base datagram packets which are

routed through the onboard Ethernet switch.

The JAUS messaging communication provides essential data to the RD. Specifically, there

are five data streams originating from other components in the control system, each of which the

RD requires for complete operation. The data included are: the vehicle’s global position and

orientation, its velocity state, the state of the surrounding local environment (in the form of a

traversability grid), feedback from low level actuators, and their health status. Each of these data

streams is in a form known as a JAUS service connection, which allows for JAUS message

86

reports to be sent on a periodic basis without needing to re-query for the report every time it is

desired.

Both the position and velocity JAUS messages originate from the same computing node

which runs multiple components. One component is the Global Position and Orientation Sensor

(GPOS), the other is the Velocity State Sensor (VSS). Both of these tasks process feedback from

low level vehicle state sensors, such as accelerometers, GPS, and odometers, and cast it into the

proper JAUS message for consumption within the rest of the computing network.

The traversability grid data is wrapped into a JAUS message which originates from the

Smart Arbiter (SARB) component, and is a compilation of a number of other grids from lower

level Smart Sensor components. Each of the Smart Sensor components maps data from a

physical environment sensor, such as a camera, to a single traversability grid. Then each grid is

sent to the SARB where it is fused together, to form a composite and more complete estimate of

the local environment.

Lastly, information from the component directly below the RD in control loop, the

Primitive Driver (PD), is fed back up to the RD level. This information includes two data

streams. One stream contains information about the low level vehicle actuators (steering, throttle

and brake), specifically the current position of each actuator, and is in the form of a JAUS report

wrench effort message. (A wrench describes a set of forces and moments, and supports the way

JAUS abstracts low level platform control.) This wrench is needed to keep an updated model of

the vehicle, mainly for determining the current front wheel steering angle, and thus allowing for

accurate state predictions to be made during the HRHC routine. The second stream contains

information about the health status of the PD itself. This data is important to the RD in order for

it to maintain control of the vehicle, and to take evasive action if there is a fault within the PD.

87

All JAUS components on the NaviGator are implemented as finite state machines. Each

one can assume one of seven possible accepted states; they are enumerated and named: Startup,

Initialize, Standby, Ready, Emergency, Failure, and Shutdown. By monitoring the state of the

PD the RD is able to infer its health status, and therefore able to maintain a more fault tolerant

level of control. In most cases the component executes its main task while it is in the Ready state.

The other states such as Initialize and Standby are included to allow the component to switch its

behavior in order to establish needed data service connections, disconnect from the rest of the

system, or to pause for operator control.

The RD Ready state software is mainly composed of one control loop. Within this loop all

of the necessary procedures and steps are taken in order to execute its primary purpose which is

to command the desired vehicle control wrench to the PD. This wrench is the only output signal /

data stream provided by the RD, and its purpose is to command the vehicle’s steering, throttle

and brake actuators such that the intended motion of the Receding Horizon Controller is

executed. The steps in between updating local software variables from the input data streams,

and the output of the command wrench, include fault detection, determination of the vehicle goal

state, traversability grid modification, and finally the execution of the HRHC and a simple PID

loop to control the vehicle’s speed.

Table, outlines each of these important steps and will be used for reference within this

section and the rest of the chapter.

In the first step of the RD control loop data is updated from the five incoming service

connections detailed above. The next step in the procedure begins to use that data in order to

detect if any possible faults have occurred. Specifically, in verifying that all critical

communication streams are still active and that the PD component is still in a health state,

88

waiting to be commanded. The third step will simply switch the RD into the Standby state if it is

so commanded by the operator. This command is determined by checking the state of the PD,

and observing if it is also in the Standby state, if so then the RD follows into Standby.

The fourth step in the procedure requires some special consideration. This is the first step

in the procedure which requires data from the input path file. The path is provided to the RD by

an operator as a flat data file, and specifies an a priori motion plan for the vehicle. The file

contains a data structure which is made up of a list of piecewise continuous path segments. Each

segment is specified with a starting point latitude and longitude, end point latitude and longitude,

desired speed, and segment curvature. At this step the RD determines which segment the vehicle

should attempt to track by analyzing the vehicle’s current position with respect to the path

segment ahead of the segment it is currently tracking. If the vehicle is closer to the next segment

than it is to the current segment, then it will switch to tracking the next one in the sequence.

Since the desired speed may vary from segment to segment, it is necessary in the following

step to update the current desired speed of the vehicle. This step requires looking forward in time

on the desired path to check for lower speeds and taking into consideration the vehicles

deceleration capability. Lower speeds on the path might also be attributable to the curvature of

the desired path segment. If the curvature is high enough, it may require the vehicle to slow

down in order to track that segment without risk of rolling the vehicle. This procedure is done by

finding the minimum path segment speed (due to desired or curvature value) over a nominal

deceleration period, and then analyzing if that speed requires the vehicle to begin slowing down

at the present time. If it does, then the current desired vehicle speed is set to a value which

accounts for deceleration time. If it does not, then the current desired speed is simply set to the

desired speed of the current path segment. This functionality is equivalent to the equation,

89

 () ()min *i ii
DesiredSpeed speed s D distTo s⎡ ⎤= +⎣ ⎦ . (4.11)

Where the functions ()speed s , and ()distTo s , determine the desired speed of path

segment s , and the distance from the vehicle to the start of the path segment respectively. The

constant D accounts for a nominal distance based deceleration, measured in meters per second

per meter. The value used on the NaviGator is tuned to: 0.25 /D mps m= .

The fifth step, of the RD control loop calculates the latitude, longitude and size of the

desired RHC goal region. The region is a circle centered at the determined coordinates and its

size is simply determined by a radius value, calculated in units of meters. The center of the area

is determined by using the RHC planning time horizon period, and the a priori path data. The

algorithm projects the vehicle’s current location onto a point perpendicular to the path, and then

extrapolates out in time, using the current desired speed, to a point that lies somewhere on the

desired path ahead. The radius of the goal region is scaled linearly with the desired vehicle

speed, to allow the discrete planner enough space to seek out, rather than a fixed size goal, which

might be too narrow to find.

Two special cases exist in determining the goal point. The first occurs when the goal is

found to lie outside of the locally mapped traversability space. Since the planner requires

knowledge of the traversability value at any given state, points outside of the grid region are

undefined and therefore seeking a goal in that space would require some significant assumptions.

Rather than plan outside of the traversability defined region, the goal point is simply projected

onto its boundary, where it meets the desired path. The second special case occurs when the end

of the path is encountered within the time horizon. If so, the goal point is just set to the endpoint

of the last path segment.

90

With the desired speed and goal point known, there is one last step required in

implementation before executing the HRHC algorithm. The step is called grid dilation and serves

a very practical purpose for obstacle avoidance. Since the vehicle takes up a region of area

within its local environment, it is necessary to account for its size during planning, in order to

ensure that there is enough clearance around the vehicle to completely avoid any obstacles. One

method to do this would be to find the minimum traversability value within a region representing

the vehicle’s footprint, in order to calculate the traversability cost at any point in the planning

search. This would thus require a separate minimum traversability value search for every node

expanded during the A* algorithm’s execution. Since there are many nodes expanded during a

nominal search, and many pixels to explore for any given footprint configuration, this operation

would be very cumbersome. A more efficient method is to expand any obstacles within the

traversability grid, by the approximate size and shape of the vehicle, and then assume the vehicle

occupies only is a single point in space, during the search routine. This dilation then need only be

done once per iteration, rather than many times during the search itself.

Also, since the traversability value is a general description of environment cost, and not

purely an obstacle representation, it makes sense to dilate the grid by the any minimum

traversability value within the expansion area, and not solely obstacle values. This guarantees

that the search will account for vehicle size and shape, even when seeking out desirable

traversability regions, or avoiding regions of intermediate cost.

The dilation procedure is implemented as a pixel by pixel loop over the entire grid. For

each pixel the dilation value is determined by looping again through an area around that pixel,

and finding the minimum traversability value within that area. The search area is called the

kernel, and it represents the approximate size and shape of the vehicle. Since the orientation of

91

the vehicle at any given node within the search may vary, the shape of the vehicle, which is

ideally rectangular, cannot be assumed in any one configuration. Therefore, the shape of the

kernel is assumed to be a circle, with a radius slightly larger than the half width of the

NaviGator. Figure 4- is an example of what a traversability grid image looks like before and after

circular dilation. The circular shape guarantees that if an area is avoided in the dilated image,

then the vehicle should at least have enough clearance to pass by it at its side. Since the vehicle

may be approaching the region at a slightly different orientation, the kernel radius is tuned to be

slightly larger than what is probably needed in order to account for its difference in shape.

At this point in the RD control loop, all of the required data and values have been

determined or modified such that the Heuristic Receding Horizon Controller (HRHC) can be

executed. The purpose of this step is to determine a control input that when commanded to the

system will yield the desirable motion to both maintain path tracking and if necessary avoid any

obstacles. The form of this control input is the steering wrench effort portion of the JAUS

wrench message that will be sent to the Primitive Driver for low level vehicle actuation. This

value varies from -100 to 100% effort, and essentially maps directly to the steering system for

turning the front wheels anywhere from 100% left, through 100% right.

As discussed in the fifth section of Chapter 3 of this dissertation, the HRHC algorithm is

implemented as a modified A* search. The first step in the routine creates the root node by using

the current vehicle state feedback (position and orientation), and the current control (steering

effort). All nodes in the search are stored as a C language data structure, with variable members

including: cost-to, cost-to-goal estimate, parent node pointer, generation number, and vehicle

state / control information. A fixed number of theses nodes are allocated in memory prior to

running the routine for the first time. They are stored in a linked list data structure, named in this

92

implementation “Node Dispenser”, which allows nodes to be divvied out as needed, and can be

reset quickly by simply resetting a single pointer that indicates the node to be dispensed next.

This Node Dispenser method has been implemented to optimize the code and increase efficiency,

verses allocating and freeing a single node, every time one is used.

The next step in the algorithm establishes the root node onto a set of nodes called the Open

Set. In this implementation, the Open set has been optimized for searching and sorting according

to the cost-to-goal estimate which represents the A* ()f̂ n value. The optimization is done by

casting the Open set into a data structure known as a heap stack. A heap stack is a stack of nodes

divided into multiple levels. The first level in the stack contains a single node, the second level

contains two nodes of which the node above is parent to. Each level after can store twice as

many values as the one above it, because the two child per parent relationship continues on as the

stack grows. In this manner, the stack expands exponentially in the horizontal direction as it

grows vertically. The heap stack is design to maintain one special property, that is, the parent

node value is guaranteed to be less than (or greater than, depending upon if the stack is desired to

be ascending or descending) the two child node values. This relationship ensures that the value at

the top of the heap stack will always be the minimum or maximum of all nodes. This is very

desirable for the A* implementation, since finding the minimum cost-to-goal estimate node on

the Open set is a crucial part of the algorithm. Having the Open set organized in this fashion

allows for that node to be found in a single step, no search need be conducted. The heap stack

however, requires to be reordered when a node is popped from or pushed onto it, but because of

the exponentially growing nature of the heap, this reordering is efficient and can be done in

()logO n computation time, where n is the number of nodes on the stack.

93

The ability to quickly find and remove the minimum cost estimate node from the heap

stack is taken advantage of in the next step of the algorithm, where it is removed from the Open

set and then checked for membership in the goal set. This is done by analyzing if the node’s

vehicle state is in the goal region. If it is, then a solution node has been found, if not then the A*

search continues by expanding a new set of child nodes through the expansion function ()nΓ .

The expansion function for HRHC is implemented by generating a new set of possible

control inputs and then predicting their effect by propagating the current node’s state through a

vehicle model function. The manner in which the control inputs are generated is defined by the

artificial input space quantization that has been discussed in fourth section of Chapter 3. The true

input that can be commanded to the PD is a continuous value in the range of -100 to 100% effort.

However, this would require generating far too many nodes to be practical. Therefore, a finite

number of nodes, representing a finite set of quantized input commands are expanded, and the

one sequence yielding the least cost trajectory is found. The first input command associated with

this sequence is then delivered as the control.

For the RD, the input space quantization resolution is a tunable parameter that can be

increased or decreased in order to improve optimality, or increase speed. This means that as the

quantization resolution is increased, the A* search is able to find a more optimal solution,

whereas if the resolution is low, the solution is less optimal, and there is a chance that may not be

found at all. Also the finer the quantization, the more elegant the vehicle control, because the

input commands will tend to vary only slightly between control iterations. If the quantization is

low, then as the commands change between control iterations, the vehicle will tend to nudge and

jolt as the steering wheels move back and forth between commands.

94

The input commands for the NaviGator are generated ad hoc to take advantage of one key

vehicle constraint. The steering wheel actuator on the NaviGator has a rate limit which only

allows the wheels to turn up to a maximum speed. This rate limit corresponds to a maximum and

minimum input command at each execution of the node expansion function. Since the steering is

rate limited, and there is a finite time between commands in the horizon search, then any

command higher than the rate limited maximum would yield the same result as the maximum

itself. Therefore, expanding any nodes with input commands higher than the rate limited

maximum will not add any value to the search and will only waste search effort. This constraint

thus allows the input space to be truncated on an expansion basis, and so resolution is increased

in the truncated space when the number of divisions is held constant. The rate limit on the

NaviGator vehicle was measured to be: 60 % / seceffort .

Also, in an effort to minimize search complexity, the quantization resolution is decreased

as a function of the search depth. This is done because the search resolution as the depth

increases is less and less critical to successful control, because the goal of the search is to find

the first input command which leads to a successful state trajectory. Therefore, higher control

resolution is most important at the root node expansion.

For each control input determined during the quantization procedure, a search node is

generated and then its vehicle state is copied from its parent node. This state is then is

extrapolated through the vehicle model function over the horizon planning time interval, using

the newly determined control input. The vehicle model used is kinematics based, and works by

projecting the vehicle’s position and orientation along a straight line, or circular arc, depending

upon the steering curvature of the vehicle state. Since the rate limit of the steering system has a

significant impact on the NaviGator’s maneuverability, it is also taken into account in the vehicle

95

model. The model function first determines how much the wheels will move in the given time

step, based upon the input command and the rate limit. The effective path curvature is then

calculated by averaging the steering path curvature at the beginning of the time step with the

steering curvature at the end of the time step. It is assumed that there is a linear relationship

between the steering effort and the geometric curvature of the path that the vehicle will drive.

The relationship can be equated as follows:

 *path effortk K SteeringEffort= . (4.12)

This is a simple mapping given the steering effort value from -100 to 100%, and the

constant effortK , determines the effective curvature of the path the vehicle will drive. As long as

the front wheel steering angle remains significantly less than 90 degrees, then this assumption

will be valid. On the NaviGator the mapping constant was measured to be:

0.0016 / *effortK effort m= .

Since the geometric curvature is simply the multiplicative inverse of path radius, the new

vehicle position and orientation may be calculated once the curvature is known. For the model, it

is assumed that the average curvature over the time interval is effectively what the vehicle will

drive, because the change in curvature in each planning step tends to be small, this assumption is

relatively benign. Also, if the average curvature is found to be very small, then it is assumed that

the vehicle is simply driving along a straight line, and so the new position and orientation state is

calculated as such. However, if the average curvature is outside of the straight assumption

threshold, then the new state is extrapolated along a circular arc, with radius equal to the inverse

of curvature. Both the straight line and circular projections assume that the vehicle speed is

96

constant over the time interval τΔ . Here the equation for calculating the new state position along

a straight line of motion is:

()
()

sin
* *

cos
prev

ave threshold
prev

xx
v k k

yy
θ

τ
θ

⎡ ⎤⎡ ⎤⎡ ⎤
= + Δ ∀ <⎢ ⎥⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. (4.13)

The state yaw angle θ is measured in global coordinates where true North is equal to zero,

and East is 90 degrees. Therefore equation (4.13), calculates the new x position using the

sin function and the new y position using the cos function.

The new position along a circular arc is calculated using a somewhat more lengthy

equation. This is done when the average curvature exceeds the straight line approximation

threshold and is given by,

() ()() () ()
() () () ()()

cos 1 cos sin sin1
cos sin sin 1 cos

prev
ave threshold

prev ave

xx
k k

yy k
θ θ θ θ

θ θ θ θ

⎡ ⎤− Δ + Δ⎡ ⎤⎡ ⎤
= + ∀ >⎢ ⎥⎢ ⎥⎢ ⎥ Δ − − Δ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (4.14)

For implementation in the NaviGator RD, a curvature threshold: 0.01thresholdk = was found

to work well.

During node expansion the traversability arc cost is calculated by analyzing the vehicle’s

state transition through the grid as it moves from its starting position and orientation to its end.

This is done by measuring which values it encounters and then calculating an average over the

interval. The grid values encountered during a state transition from one point to another are

found by assuming the vehicle moves along a straight line from the start point to the end point.

Since the grid resolution is somewhat low, 0.5 m by 0.5 m, this assumption is valid, because the

pixel values touched by the state trajectory would vary little between a short circular arc path and

a short straight line path, which is mostly the case. Bresenham’s line algorithm [BRE63] is used

97

to determine which pixel values to measure along the state transition line. This algorithm is

highly optimized for calculating the pixel coordinates of a straight line through a rasterized

image space, and so it is very desirable for this implementation, where thousands of small lines

need to be measured during each search.

One option the operator has when executing the RD component, is to plot the image

coordinates in the traversability grid, which are measured during the HRHC algorithm. This

allows for the effective search space to be analyzed at runtime. Figure shows the result of this

plotting within a sample traversability grid on the left. As shown, the HRHC routine creates a

tree like structure of possible state trajectory paths through the local environment. This structure

corresponds to the quantized control inputs which are generated and extrapolated through the

vehicle model. By analyzing this area searched by the algorithm it is possible to gauge the

optimality of the solution trajectory. If the area searched both relatively large and dense, then the

solution path should be the minimum of all paths within that area, and therefore has been

weighed against many possibilities. However if the searched space is sparse, then the solution

may be poor, because not enough other possible solutions have been checked to verify than

nothing better exists. This is one of the key methods used in tuning the HRHC algorithm.

Parameters such as the number of quantized input commands, horizon time, and planning time

step, are tuned so that the search will be as broad as possible, while still remaining fast enough

for real-time execution.

Finally, after a solution trajectory has been found, it is traced back from the goal node to

the root node via the parent node pointers. The node directly before the root node is reached,

contains the control input value that is then used as the steering command for the iteration of the

control loop. At this point the HRHC algorithm is complete.

98

The next step in the overall process is to execute a simple PID controller to maintain the

desired vehicle speed. This controller produces two mutually exclusive commands. One is for the

throttle and the other for the brake actuator. They are found by executing the PID controller

given the set point speed, and the current vehicle speed feedback, in order to determine a value

called the linear control effort. If the effort is positive, then it is multiplied by a throttle gain

value, which determines throttle command sent to the PD. Also if the linear effort is positive, the

brake command is simply set to zero. Conversely, if the linear effort value is negative, then it is

scaled by a brake gain, and then delivered to the brake, while the throttle value is held at zero.

The general PID controller form is modified slightly with a feed-forward gain ffk , and a constant

bias value effortb . This linear effort control value effortL is calculated by:

 v
effort p v i v d ff desired effort

deL k e k e dt k k v b
dt

= + + + +∫ . (4.15)

Where , ,p i dk k k are the PID gains, ve is the instantaneous velocity error, and desiredv is the

instantaneous desired velocity. The linear effort value requires a constant bias value in order to

maintain a positive brake command when the remaining terms are zero. The throttle and brake

commands are then calculated as

if 0
0 otherwise

if 0
0 otherwise

t effort effort
effort

b effort effort
effort

k L L
T

k L L
B

>⎧
= ⎨
⎩

<⎧
= ⎨
⎩

. (4.16)

The constant control parameters used for the RD implementation on the NaviGator are:

 15.0, 6.7, 20.0, 15.0, 57.5, 0.65, 1.3p i d ff effort t bk k k k b k k= = = = = − = = − ,

99

and to prevent integral windup, the velocity error integrator is limited to 4.9± . This keeps the

vehicle from large over or undershooting of the desired velocity, if it is greatly disturbed, from

terrain or other unexpected external forces.

After the PID controller is finished determining the steering and throttle commands, the

complete wrench effort structure, containing the steering, throttle and brake commands, is ready

to be sent on to the PD. This step is done by wrapping the values into the JAUS set desired

wrench effort message, and then transmitting the corresponding data packet to the PD. This

functionality is provided through the data structures and API functions linked to the RD

application by the CIMAR JAUS libraries discussed above.

Faults and Failure Modes

The Reactive Driver control loop has several built-in fault detections, for conditions that

may persist and can cause the system to fail. The first condition occurs when an obstacle or

group of obstacles causes the planning search not to be able to find a solution trajectory. In this

case the vehicle would inevitably have to collide with the obstruction if it were to continue on

course. In order to avoid this possibility, the control loop detects the obstruction by observing

that the HRHC solution passes through an obstacle, and slows the vehicle down. By doing this,

the vehicle is free to make more evasive maneuvers because it is has more mobility at slower

speed. In the case where the vehicle continues to slow until it comes to a complete stop, and still

cannot find an unobstructed solution, then the RD goes into a fault state called “Blocked”. This

means that the vehicle is essentially stuck in place and must either wait for the obstruction to

clear out of the way or it must reverse to find a different course.

The Blocked condition tends to occur more than other errors in practice and testing,

especially during navigation in harsh environments, such as off-road terrain. The causes for these

blockages usually are false positive obstacles detected by one or more of the system’s Smart

100

Sensors, while operating on a narrow road or corridor. This forces the system to believe it cannot

find an unobstructed solution, while in reality, there is nothing in the way.To overcome this

problem in practice, a “Nudge” mode was built-in to the control loop, where the system would

move forward slightly after being Blocked for a short period of time. Most of the time this had

the effect of clearing the false positive in the traversability grid, and the NaviGator would

continue on course. Often a light obstacle, such as a high patch of grass, or stick would cause the

blockage and the vehicle would simply push over it unharmed.

Another failure mode may occur when there is some coupling between the vehicle

dynamics and the traversability grid, input path, or goal point. This problem was discovered

during an experimental implementation of the RD component on an Air Force Research

Laboratory (AFRL) autonomous vehicle. In that experiment, the goal point for the HRHC search

was set to be a fixed distance from the vehicle, and explicitly dependant upon its instantaneous

heading. This distance and heading dependency caused the planner to repeatedly obtain the same

trajectory and control solution. In this case, the initial control action was often opposite the

desired motion. The first control command in the solution sequence would usually be intended

by the planner to make a slight course correction, in order to find a more desirable path. This

made the HRHC solution unpredictable and caused the vehicle to be unstable. The problem was

corrected by removing the explicit dependence on the vehicles heading when calculating the goal

point, thus allowing the algorithm to obtain a unique solution upon the following control loop.

Lastly, this implementation of a Receding Horizon Controller does not make use of a

locally stabilizing control law. They are often used in RHC to drive the system inside of the goal

region, and also in the stability analysis, to determine a terminal state cost penalty. The reason

for this is that the system is not designed to ever reach the goal region. Upon each control loop

101

the goal region is recalculated at a point further along the desired trajectory than in the previous

iteration. This cycle continues until the vehicle reaches the end of the path. In this scenario, the

size of the goal region tends to be much smaller than the scale of the entire motion path, so it is

reasonable to simply stop the vehicle at any point within the goal region, rather than driving it as

close as possible to the goal point. Therefore, in practice the vehicle is simply halted, and the

steering command is set to zero, when the goal region is reached, and so no locally executed

control law is needed.

Conclusions

This Chapter has detailed the application and implementation of the theoretical concepts

introduced in Chapter 3, and also introduced some new thoughts and considerations for obstacle

avoidance in the optimization problem. Specifically addressed in the implementation overview,

is the Reactive Driver component of the NaviGator’s control system. This component employs

the new and novel Heuristic Receding Horizon Controller, introduced in this dissertation as a

means to simultaneously plan and control an autonomous vehicle through a cluttered

environment.

As highlighted in the fourth section, there are a number of steps and procedures that must

be addressed before execution of the HRHC algorithm. Some of these steps require ad hoc

implementations, such as determining the goal region for the search. Also, there are some steps

which require optimized data structures, and advanced knowledge of computing methods, such

as the heap stack design, used here for the A* implementation.

The new planning and control method, which has been shown to unify two tasks into one,

comes with some disadvantages as well. The fifth section, has mentioned some of the known

faults and failure possibilities that this technique may present. Although, many are avoidable and

102

predictable, there is an inherent unknown when working with such a new technology that still

requires a sufficient amount of testing and learning, in order to truly apply it in practice.

The following chapter is dedicated to some of the testing that has been done on this new

and novel technique. It highlights and discusses the data and results collected, which help to

support this thesis, and demonstrate the capabilities of both the theory and implementation

discussed.

103

Table 4-1: RD’s ready state control loop step by step procedure.
Step # Step Procedure
1 Update information and local variables from incoming service connection data streams.
2 Check for system communications or PD faults. If any exist, then switch the RD into the

Emergency State.
3 Check operator Run / Pause command. If Pause, then switch the RD into the Standby

State
4 Determine the current path segment which the vehicle is attempting to navigate, based

upon the systems newly updated position value.
5 Determine the current instantaneous desired speed from the RD’s input motion path file.
6 Calculate the current goal region for the Receding Horizon Controller, based upon the

input motion path, the planning time horizon, and the current desired speed.
7 Dilate the traversability grid received from the Smart Arbiter into a new grid which will

be used for planning by the RHC routine.
8 Execute the HRHC algorithm given the current desired speed, goal region, vehicle state,

and dilated traversability grid. Obtain the desired steering command based on this
algorithm.

9 Execute speed PID control loop in order to calculate the current desired throttle and
brake commands.

10 Wrap the current desired steering, throttle and brake commands into a JAUS set wrench
effort message, and send the message to the Primitive Driver for execution.

11 Repeat procedure, starting at Step 1.

104

Figure 4-1: The NaviGator high level control system block diagram. The system is made up of

four key elements, highlighted in red, orange, green and blue. They are the: control,
intelligence, planning, and perception elements respectively.

105

Obstacle

Vehicle

Desired
Motion PathMultiple Equal

Solution Paths
Figure 4-2: Simple obstacle avoidance case, showing a vehicle attempting to track a straight line

and a single obstacle existing on the center of that line. This case intuitively shows
that there may exist multiple and equivalent minimum cost state trajectories, yielding
different but equal control input sequences as a result of the RHC optimization
process.

106

Figure 4-3: The traversability grid concept. The local environment, depicted (above), with a

corresponding traversability grid (below). Both images are conceptual
representations of both the real world local environment around the vehicle at the
center, and its mapped grid values respectively.

107

Vehicle

Desired
Motion Path

XTrack

Herr

Path
Tangent

Vehicle
Heading

Figure 4-4: Path tracking error system. The tracking metric is made up of two measurements.

The cross track error measurement, XTrack, is the perpendicular position error of the
vehicle with respect to the path. The heading error measurement, Herr, is the heading
error angle of the vehicle with respect to a path tangent.

108

Figure 4-5: Traversability grid dilation before (left) and after (right). The grid on the right is

dilated with a circular kernel with radius 2.5 pixels.

109

Figure 4-6: Planning and control search area, sample traversability grid outputs. The pink region

(left) shows the area searched by the A* optimization routine, in order to determine
the solution sequence trajectory shown in black. The image on the right shows the
optimal predicted trajectory with no obstacles surrounding the path sequence.

110

CHAPTER 5
TESTING AND RESULTS

The receding horizon controller described in this dissertation has been implemented and

tested in several different forms. The first version implemented was designed for the 2005

DARPA Grand Challenge competition. Several lessons learned were gained from working with

and testing that implementation. The most important one them is that the motion stability of the

RHC is highly coupled to the system model and the optimality of the calculated control

sequence. This unfortunately means that there are few gains or parameters that can be tuned to

adjust control stability. Simply put, if the system model is drastically incorrect or the

optimization routine cannot find an admissible solution then the system will be inherently

unstable. At that point, either a new more accurate model must be introduced and or the

optimization algorithm must be enhanced.

The second version was implemented on an Air Force Research Laboratory (AFRL)

vehicle at Tyndall AFB. The vehicle, known as the Land-Tamer, is a skid-steered hydraulically

actuated platform. Therefore, the vehicle model used for the RHC implementation was

significantly different from the one used for the NaviGator vehicle. Several lessons were learned

from this implementation. The main one discovered was the state-goal coupling instability

failure, which was discussed in Section 5 of the previous chapter.

The latest version follows directly from the discussion of the previous chapter and is the

one being tested and reported on here. This implementation is the most inline with the theoretical

approach detailed in Chapter 3. The CIMAR NaviGator vehicle and the computing machines

within will serve as the general test bed and provide a single platform to eliminate any variation

between implementations on different machines. It is assumed that if the claims made within this

dissertation can be supported by implementation and testing on the NaviGator vehicle, then they

111

would in turn be validated for other similar AGVs. Although, it should be understood that any

methods tested here would almost certainly need to be modified and or tuned to support the

vehicles upon which they are operating.

Before infield testing of the implemented RHC algorithm, a test plan was established for

organizational purposes. The first section of this Chapter outlines and explains the test plan for

data collection and analysis of results. The plan has since been conducted and a post test review

is given in the second section. Finally, the data results are presented and some conclusions are

drawn in the third section.

Test Plan

The following test plan establishes and outlines a means to collect experimental data and

results that can either support or refute the primary new and novel concepts of this dissertation.

The critical concept follows from Remark 1 of Chapter 3, which claims that RHC applied to an

AGV inherently unifies the planning and control tasks. Traditionally these tasks have been seen

as separate problems for autonomous vehicles.

In order to support this claim, information and evidence must be collected that shows a

single RHC process accomplishing classic controller-like capabilities such as: stabilization and

regulation onto a predetermined motion structure, while also achieving convergence

characteristics that can be identified by typical performance metrics. This means that

measurements defining the system’s time response to step, ramp, and other motion commands,

must be obtainable. In addition, separate tests must be conducted that show the same exact RHC

task demonstrating planner-like capabilities. These include abilities such as: obstacle avoidance,

and favoring desirable terrain. Data that corroborate these behaviors, such as object clearance

distance and trajectory departure times, should also be presented.

112

One item of critical importance in testing these claims is the use of baselines or controls

against which the aforementioned results can be compared. One valid baseline would be use of a

classic AGV motion controller. Pure Pursuit [COU92], Vector Pursuit [WIT00], or a simple PID

controller, have all been implemented in the past with success. A comparison of the RHC

algorithm’s performance against one of these algorithms implemented on the same vehicle would

offer a useful contrast to relatively score the new control algorithm’s value. If in addition, the

RHC algorithm can be shown to achieve planner-like behaviors then clearly some value has been

added to the overall control; an ability which by nature could not be provided by any traditional

motion control scheme. To facilitate organization of the different tests that will be conducted

Table 5-1 details the design, setup, procedures, and data collection for each part.

Test Review

The tests detailed in the previous section, were conducted on Friday September 15th 2006,

at the Gainesville Raceway Road Course (Figure 5-1). This location was selected because it

offers a controlled on-road operating environment for the vehicle, and its seclusion makes it a

very safe place to run the NaviGator.

Since the NaviGator is a large and heavy vehicle, safety is very important during its

operation. If the vehicle becomes unstable, or goes out of control, it is critical that no person is

nearby, because the behavior of the system would be unknown. The road course allows a robust

test to be conducted, with few observers and operators needing to be present. Also, in the event

that a problem does occur, the NaviGator is equipped with a rugged wireless kill switch system,

which shuts down the engine, releases its emergency brake, thus assuring that it will come to a

stop. The kill switch system also has a run / pause signal which is used to start, stop, and pause

mission execution from a safe distance. At the Gainesville Raceway, the vehicle’s kill switch can

113

be controlled from a single static base station. This is because there is continuous line-of-sight to

the NaviGator no matter where it is on the course.

The test location also offers a near limitless variation of path geometry that may be

constructed for any given test run. There are a number of different smooth curved track

segments, many with different radii, and also long straight-aways, both of which allow for good

testing of tracking performance, and meet the criteria of the test design above.

More importantly, the track allows the observers and operators to visually gauge the

vehicle’s performance in real-time. Since the designed path geometry is known ahead of time, it

is clear that by observing the vehicle on-road, it is executing the correct mission. A motion path

executed over an area with no clear landmarks or road geometry, makes mission observation

uncertain at runtime, and only by observing tracking data, can it be made clear whether or not the

vehicle executed the mission correctly.

The conducted tests required several days of setup and preparation prior to being able to

run them and collect valid data. The first step in this setup process was to create a map of the

racetrack. This was done by logging global position system (GPS) data of the NaviGator while it

was driven manually around all of the different parts of the course. Once collected, the data was

post processed and loaded into Mobius, an Operator Control Unit (OCU) software application

developed by Autonomous Systems Inc. Within Mobius, the GPS data of the track was used to

create a map, so that motion path segments of the test mission could be drawn by hand over the

computer modeled track. The path segments drawn were designed to follow the test plan intent

and layout detailed in

Table 5-1. These segments were then saved to a flat file, in the format accepted by the

NaviGator’s RD component, and uploaded to the vehicle control computing node.

114

The conditions during test runs were nominal. The weather was fair, allowing for the

mechanical systems of the vehicle to run without any problems, such as overheating or rain

interference with system sensors. However, one problem presented with the onboard GPS system

throughout the day. This was observed when the vehicle was noticed to drive along a different

lateral position on the road course during each individual test run, even though the mission path

file was held constant. This behavior is typical because the GPS solution position will tend to

drift slowly throughout the day as the GPS satellite constellation continuous to change overhead.

However, the GPS solution on the day of the test drifted to an extent which caused the vehicle to

drive adjacent to, and not on the road. Although, it remained clear that the vehicle was still

attempting to drive, the correct path as sensed by GPS. The problem was analyzed and isolated to

the onboard position system, because the control error never reached a value greater than a few

meters, while at the same time the vehicle was visually observed to be off track by

approximately 10 meters. Therefore, the problem had to be within the GPS data.

The obstacle avoidance portion of the tests was also successful. However, since the

vehicle’s position estimate continued to change over time, it was difficult to place the

obstructions along the path so that the vehicle would encounter then head-on during any given

run. One lesson learned from this, is that it is best to use very large obstructions when testing OA

with position uncertainty. The obstacles used were construction barrels approximately 0.6 meters

in diameter, which was found to be somewhat too small to test with while position system errors

are on the order of several meters. Nevertheless, the vehicle was found to avoid the obstacles,

when encountered, and the data presented in the following section supports this find.

Test Results

The first step in the test given the plan above is to design a path circuit for motion tracking.

As aforementioned, this was done using the Mobius software tool. The path circuit designed for

115

the tests indeed does satisfy the requirements presented in the test plan. It is made up of segments

both straight, and curved, with the curved portions having varying radii. The road course at the

test site greatly facilitated this design. The segments were easily mapped over a subset of the

track and lie near the center of the actual road pavement.

The decided upon path segments and their geometry is depicted in Figure 5-2. As shown

there are 11 segments, 5 straight and 6 curved; they are numbered in order of intended motion

tracking. The curved segments tend to decrease in radius as the circuit progresses from start to

finish, and thus making tracking more and more difficult as the vehicle pursues the mission. The

last segment is a large arc included simply to bring the vehicle back to its starting position on the

course. Also, notice that there is a discontinuity between segments number six and seven. This

was purposely built into the circuit in order to test the system’s response to an instantaneous step

in cross track error. Since both segments have the same orientation, the cross track error is

isolated and its response can be measured.

The data making up the path file for the test is summarized in Table 5-2. For each of the 11

segments, the starting point latitude and longitude are given, along with the endpoint latitude and

longitude. The radius values shown in the table were calculated as the multiplicative inverse of

the segment curvature specified in the path definition file. Also each segment has an associated

desired speed value, which is not shown in the table, but was set to 4.5 mps for the test. This is a

nominal speed for the NaviGator and allowed for the effect of speed variations in testing to be

minimized.

The first series of tests are intended to establish tracking results for the designed path

circuit using a classic vehicle motion controller on the NaviGator. This is done in order to

116

determine a set of baseline metrics that may be compared to the measurements found for the

RHC algorithm that is executed in the RD component.

The classic method decided upon for this test is a simple PD controller that regulates the

two tracking states: cross track error, and heading error. The controller is used to determine the

vehicle steering command, while it is operating at a constant speed along the path. By regulating

the two tracking signals to zero, the vehicle is guaranteed to track the desired path.

The controller was implemented within a component on the NaviGator, and took the place

of the RD within the vehicle’s overall control system. The component is called the Global Path

Segment Driver (GPSD), and takes as its input, the same global path segment file that is used for

RD execution. Like the RD, it uses feedback from the GPOS and VSS components to measure

the vehicle’s state in order to generate a control wrench message that is commanded to the PD

component. Unlike the RD, this component does not receive wrench feedback from the PD, nor

does it receive any traversability grids from the vehicle’s Smart Arbiter. For consistency, the PID

speed controller within the GPSD was kept to be an identical copy of the one used within the RD

component, thus canceling any effect speed control might have on the performance of the two

controllers.

The PD control algorithm is essentially two controllers summed together, which determine

a wrench value somewhere between -100 and 100% steering effort. It is also modified slightly

with a feed forward path curvature term in order to assist the controller with tracking curved path

segments. The steering effort control value effortS is thus calculated by:

 effort xtp xtd hp hd ff k
d XTerr d HerrS k XTerr k k Herr k k s

dt dt
= + + + + . (5.1)

117

Where , , ,xtp xtd hp hdk k k k are the PD gains for the cross track and heading error respectively,

ffk is the curvature feed forward gain, and ks is the current path segment curvature. The gain

values tuned into the NaviGator for this controller are:

 7.0, 2.0, 45.0, 10.0, 625.0xtp xtd hp hd ffk k k k k= − = − = − = − = ,

and were determined qualitatively to produce stable desirable tracking motion.

Three test runs were conducted, measured and logged for this controller. The data collected

was logged at a rate of 10 Hz, the same rate at which the controller is executed. The first run was

intended to measure the controller’s tracking performance along the path, given no initial

significant error in either cross track or heading. It was setup by positioning the vehicle near the

start point of the first path segment, and then switching the automatic control system on. The

radio kill switch system mentioned above was used to start the NaviGator from a safe distance.

Figure 5-3 shows the tracking position data logged from the first run of the GPSD. Due to

the scale of the image, it is difficult to observe the fine details of the tracking performance of the

vehicle. However, there are several distinguishable features that can offer some insight. In the

plot, it can be seen that the vehicle begins slightly off track and then quickly stabilizes and

converges onto the path. During most of the initial tracking, the vehicle is too close to the path to

notice any difference between the two data sets, but after the 6th segment it is clear that the

planned instantaneous step in cross track error is quickly regulated back close to zero. Lastly,

notice that the vehicle tracking performance degrades significantly around the two tight turn

segments 8 and 9. This is because the turn radii are very close to the NaviGator’s minimum

turning radius, and it becomes very difficult for the controller to regulate the vehicle while it is

so close to its operating limit. Nonlinear dynamic effects, such as input saturation tend to

increase in their impact on performance during these scenarios. Also, the inherent delay in

118

steering angle, due to its natural rate limit, keeps the steering wheels from getting to the correct

tracking position as soon as the segments are encountered. This is a classic problem with front

wheel steered vehicles and their dynamical constraints. If the path being tracked is not second

order continuous, then the vehicle is required to come to a stop at the discontinuity, so that it may

turn its wheels to the correct position. Since the path segments designed here are continuous in

both position, and heading, but not curvature, this phenomenon presents itself in the test.

An anomaly discovered during data analysis and post processing can also be observed

within the planned path itself at segments 8 and 9. Clearly there is a discontinuity between

segments, although they were designed to be smooth. This is simply due to post processing,

because the path data points were calculated from the vehicle’s location, cross track error, and

heading. In the controller software the path segment transition happened prior to the intersection

of the two segments and so a discontinuity is observed because the segments do not share the

same curvature or center point location.

Since the scale of the complete path circuit is too large to observe the full detail of tracking

performance, a better set of data to visualize are the heading and cross track error signals. A plot

of the heading error for the first test run of the GPSD is provided in Figure 5-4, it clearly shows

more detail of the regulation performance for the PD controller. At this scale it is possible to

observe the quantized nature of the heading feedback signal, due to resolution of the system’s

heading sensor, the discrete values of the signal are identifiable within the plot. Clearly since the

two tracking signals are coupled dynamically, the plot of the system’s cross track error appears

similar, and is given by Figure 5-5.

Notice that both signals indicate a large initial tracking error, a large disturbance at

approximately 100 sec (due to the discontinuity between segments 6 and 7), and another large

119

disturbance at 125 sec (due to the tight turn segments 8 and 9). Also, both signals settle out and

remain close to zero for the last sixty seconds. Rather than display and analyze both heading and

cross track error for each test run, their inherent coupling allows only one to be studied to

support the thesis. Therefore, for brevity, analysis of all test runs is focused only on cross track

error, for this dissertation. Its resolution on the scale analyzed here is finer than the heading

error’s, so it allows for clearer distinctions to be made.

The second run of the GPSD tested its response to an intended very large initial cross track

error. The purpose of this was to observe the PD controller’s reaction to an error value closer to

the point of its operating envelope. Since the PD is a linear control system operating on a

nonlinear system, its control region only a local neighborhood of the error system origin. Outside

of that region the control system will inherently be unstable, and the system will fail. It is

incapable of globally stabilizing the vehicle onto the path, or in other words, it cannot bring the

vehicle to the path from any arbitrary point. A simple case can justify this concept. As the cross

track error increases from zero to infinity, at some point it will completely dominate the

remaining terms in the control equation (5.1). At this point, the steering effort will be saturated in

one direction, and the vehicle will simply drive in a never ending circle, because the cross track

error will never drop below the saturation value.

The cross track error signal for the second run is depicted in Figure 5-6. Here the large

initial cross track is shown to be -25 meters. Regardless of this, the system is indeed within its

operating limits because the tracking error is quickly regulated and stabilized back close to zero.

However, due to the controller’s linear capability, there is a large overshot of the path (7 meters,

or about 30%) and again an undershot (2.5 meters) before it is reacquired. From that point on in

the path mission, the tracking performance is very similar to the first test run. The disturbance

120

between segments 6 and 7 is rejected, and the error peaks to approximately 3 meters on the sharp

turn segment 8 and 9. The large overshoot in this test run is highly undesirable since the vehicle

traveled far off of the intended path after it was already reached.

A final test run of the GPSD was conducted with an even larger initial cross track error

than the second run. This was executed to demonstrate the unstable nature of the control system

while operating outside of its acceptable range, and to observe its behavior during this mode. The

expected behavior was that the system would drive in a continuous circle, however that was not

observed. Instead, the vehicle turned almost completely around and started driving a direction

opposite than what the path desired. This is most likely because the vehicle was still within a

range that did not saturate the steering command, but was enough to create an unstable and

unpredictable behavior. In Figure 5-7,notice that the cross track error begins to converge but is

then interrupted and only reaches a minimum absolute value around 20 meters.

The output signals from each test run were also recorded for control system analysis.

Figure 5-8 provides the three signals: steering, throttle, and brake. All are mapped within the

same plot because they all have a similar scale. Steering exists from -100 to 100% effort, while

throttle and brake have a range of 0 to 100% effort. The steering signal is negative for left-hand

turns and positive for right-hand turns. The steering signal clearly indicates all of the maneuvers

and features encountered during the run. There is an initial response to the off-track starting

position, each turn segment can be clearly identified from the large steps in the command, which

occur due to the curvature feed-forward term in the controller, and the cross track step at

segments 6 and 7 is seen as a step response in the steering shortly before the 100 sec time mark.

Interestingly, there appears to be a slight bias in the steering control for long straight segments.

This is most likely due to a small misalignment in the steering actuator system.

121

Speed control for the GPSD system worked well during the tests. The velocity control

system response for the first GPSD test run can be seen in Figure 5-9. As indicated there are

many disturbances in the signal, even though the command is held constant, the speed does not

appear to reach a steady state. This occurs for several reasons. First, the current path segment

geometry is changing regularly, so the steering wheels must turn often and thus upset the

external forces acting on the vehicle. Second, the throttle, engine, and drive train dynamics are

highly nonlinear. Continuous gear switching in the automatic transmission is one nonlinear

effect, for example, which can cause the system to change response. Also, the resolution of the

speed measurement is only around 0.1 mps, this may prevent the control system from any fine

tuning that is required to achieve steady state. Despite this behavior, the measured speed remains

within 0.5 mps of the desired most of the time. This is a very acceptable bound in practice.

In summary of test part 1, the set of runs conducted with the GPSD component executing

the PD controller described, yielded a complete set of baseline data needed for comparison to the

RD algorithm. The controller performed as expected, stabilizing the vehicle’s motion onto the a

priori path structure, and performing better on wide turns than on sharp turns. The expected

unstable behavior for a large cross track error was also observed in the third run, and offers some

insight to the limits of the algorithm.

Test part 2 requires runs identical to the nominal cases of part 1 to be conducted using the

RD component, which executes the new and novel receding horizon controller introduced in this

dissertation. As a brief review, the RHC algorithm implemented on the NaviGator uses feedback

information from the system state and environmental sensors, to simultaneously plan and control

the vehicle’s motion on track and around obstacles. The output of the RD is a wrench command,

containing the three steering, throttle and brake effort values, and is identical to the output format

122

of the GPSD. The test runs conducted here in part 2 measure the algorithm’s ability to regulate

the path tracking of the segments given in Figure 5-2.

For part 2, two test runs were conducted, measured and logged for this controller. The data

collected was recorded at a rate of 10 Hz, the same rate at which the RD receding horizon

controller is executed. Also like before, the first run was intended to measure the controller’s

tracking performance along the path, given no significant cross track or heading error.

Figure 5-10 shows the tracking position data logged from the first run of the RD. As

before, the scale of the image makes it difficult to observe the fine details of tracking

performance. However, the same distinguishable features are present after the 6th segment where

it is clear that the planned step in cross track error is quickly regulated back close to zero. Also,

the vehicle tracking performance degrades significantly around the two tight turn segments 8 and

9, as expected and similar to the linear controller. The main difference between the GPSD and

the RD observed here is that the RD tends to have a more prominent steady state cross track

error. This is due to the nonlinear nature of the controller, input quantization, and system model

inaccuracies. However, the performance overall remains quite acceptable for path tracking and

regulation.

The cross track error data for this run is a much better indicator of controller performance

at the vehicle scale. Shown in Figure 5-11, the error signal interestingly corresponds closely to

what was observed in the PD controller signal, with the exception that steady state error is larger.

However certain performance features are almost identical to those observed in Figure 5-5, and

Figure 5-6. For example, the initial error quickly converges down to a value within 1 meter, the

6 to 7 segment transition step and its response is clearly observable around 100 seconds, and like

the PD controller, the RHC has difficulty maintaining close tracking during the sharp turns. The

123

peak error value around 3 m during segments 8 and 9 is analogous to the peak error observed in

the linear controller. This data shows concretely, especially when compared to Figure 5-5, that

there is no major tracking performance difference between the two controllers. The only

distinguishable difference remains the cross track steady state error, which although is larger for

the RD, is within acceptable limits for the task. Most likely it could be reduced further with some

additional performance tuning.

A more noticeable distinction between the PD and RHC controllers is identifiable in the

second RD run data (see Figure 5-12). In this instance, the RD was given a large initial cross

track error, approximately equal to that of the second run of the GPSD, about 25 meters. In this

case, there is still an overshoot of the path, but not nearly as much as the one encountered for the

GPSD. The overshoot seen here is approximately 1.5 meters, which is still within acceptable

operating limits. This ability makes the RHC controller much more desirable than the PD

controller, since fast and stable path reacquisition is one of the most critical performance

qualities of an autonomous vehicle control system. After this portion of the test run, the

performance remains nominal and similar to that seen in each of the previous stable runs.

Figure 5-13 presents the output performance for the RHC controller. Here some significant

differences in control can be observed between the classic PD controller and the RHC algorithm.

The first noticeable difference is that the RHC steering output tends to oscillate in a square wave

like fashion, especially during the wide turn segment times. This is caused by the artificial input

quantization that must be done in order to allow the HRHC algorithm to find a solution in real-

time. The quantization does not produce a fixed set of discrete states for the steering value to

occupy, because it is based off of the instantaneous steering feedback from the primitive driver

component. Thus the quantization is recomputed ad hoc, within the node expansion function of

124

the A* search. Another clear distinction is that the RD uses much more command authority

(steering range) than the PD controller, specifically during the initial convergence, and the sharp

turning period. This is largely attributable to the lack of steering cost penalization within the

value function of the RHC. However, this effect is not undesirable in practice since it allows for

faster tracking and regulation of path motion. Conversely, the RD uses less control authority than

the GPSD for small disturbance instances, such as the cross track step at segments 6 and 7. This

is due to its higher steady state error tolerance, and lack of convergence effort within its goal

region.

For equality the speed control system performance of the vehicle during RD execution is

presented in Figure 5-14. The plot is given for the first and nominal run of the RD, as with the

GPSD plot. Similar to the previous speed controller performance graph, this figure shows the

speed remaining with 0.5 mps of the desired speed, most of the time. Interestingly, the speed

tends to converge during the later portion of the run. This is an example of the unpredictable

nature of a nonlinear control system within its bounded stability region. It could have been

caused by anything from a constant gear selection in the automatic transmission, to an activation

of the vehicle’s onboard air conditioner, which is coupled to the engine dynamics through power

generation equipment. Since these causes are not measured or modeled, they cannot and are not

explicitly compensated for in the controller.

As a final controlled comparison and summary of tests part 1 and 2, the response times,

percent overshoot, settling times, and steady state errors, were recorded for the cross track error

step between segments 6 and 7, for both the GPSD runs 1 and 2, and the RD runs 1 and 2. Table

5-3 contains the values determined for each measurement. This side by side comparison analysis

of the four step responses strongly supports the hypothesis that the RHC algorithm can

125

effectively regulate an autonomous ground vehicle onto a predetermined motion structure. While

there appear to be some quantitative tradeoffs between the two controllers, it is evident from both

the plots above and the table, that new RHC controller response is stable, effective and its

response is able to be measured in the same way as a classical controller. Clearly by tuning it is

possible to change the numerical results presented here. Therefore their purpose is only to show

that the two controllers are comparable and within some tolerance of one another, which it

indeed does.

The third test part is intended to demonstrate the Obstacle Avoidance (OA) capability of

the RHC algorithm, something which cannot be provided by a classic style controller, and to

offer an analysis of the collected OA data. The data was collected over a single run of the RHC

controller on the same test track as the previous two parts. Along with the signal data typically

collected on each run, traversability grid images, which are output by the RD as a development

and debugging tool, were recorded. These images were logged remotely by a standalone

visualization component at a rate of 3 Hz, an arbitrary value.

Unfortunately, post processing of the tracking data from this test revealed significant

position system problems during the run. There are several visible jumps in the vehicle’s

estimated position, and as a result, it is difficult to detect where in time the vehicle deviates from

the prescribed path in order to avoid an obstruction. Nevertheless, there were a total of four

obstacles placed on the path prior to the run, and the NaviGator was able to avoid them. The four

objects were large construction barrels, which are easily detected and mapped into the

traversability grid by the NaviGator’s Smart Sensor components. The logged traversability grid

data shows the avoidance much more apparently than the position and error signal data.

126

As in the previous two test parts, an overview of the vehicle’s track position data is

presented in Figure 5-15. Here it can be seen that the vehicle deviates from the path at the four

obstacle locations, each of which is called out. Position system uncertainties are clearly present,

especially around segment 7, which indicates a strong estimate drive to the North.

The detail of the run is identified in Figure 5-16. Again the four obstacle avoidance

maneuvers are called out in the diagram. In these portions of the mission, the vehicle clearly

deviates from the intended tracking, as anticipated. Also, the large jumps in position estimate are

called out and circled in blue. These are not control system related, and instead are caused by

solution discrepancies within one of the two onboard GPS receivers.

The obstacle avoidance of each of the four barrels is most apparent in the traversability

grid images, as mentioned. Figure 5-17 provides these grid images, and indicates the results of

the RHC optimization routine; at or near the time each object was passed by the NaviGator. The

barrels appear as red or orange circles in each image, and were dilated by a radius of 3.5 pixels,

so the vehicle would have enough clearance to maneuver around them during the run. Other

large red or orange areas in the images indicate surrounding terrain or trees, and are not in the

way of the vehicle while it is on track.

Some of the images have spotting artifacts in them which are attributable to instantaneous

jumps in the position solution, which causes sensed data to be placed in the wrong grid location.

However, since the position between the obstacles and vehicles is relative, their relative position

in the grid remains constant, and the RHC algorithm is able to consistently steer the vehicle

around the true obstacles.

Also, as discussed in the previous chapter, the pink region in the grid indicates the possible

solution trajectories that were explored during optimization, and the black or white line shows

127

the final trajectory selected. The pink lines on the grid edges are new spaces which the vehicle is

moving towards, but has yet to populate with any environment estimate.

In summary of test part 3, the NaviGator was given a path mission identical to the previous

two tests. The vehicle performed as expected, avoiding all four of the encountered obstacles and

also maintaining adequate path tracking while in free space. These data and results of this part

therefore support the hypothesis claim that RHC applied to an autonomous ground vehicle

allows planning and control to be done simultaneously.

The next chapter focuses on the overall results and conclusions which can be drawn from

this dissertation. It also details some of the advanced concepts, which are outside of the scope

here and also some future work that can be done to progress this research area.

128

Table 5-1: The receding horizon control autonomous vehicles test plan. The test plan is made up
of a hypothesis and three main parts: one for control, another for the RHC algorithm
itself, and lastly a part to test Obstacle Avoidance.

Part Label Part Explanation

Test Purpose Establish RHC algorithm’s ability to unify planning and control for
autonomous vehicle motion, and to compare the algorithm’s performance
against a classical linear controller.

Hypothesis RHC applied to an autonomous vehicle inherently unifies the planning and
control tasks, so that they may be executed simultaneously. This allows a
single task to accomplish motion state regulation and also provide obstacle
avoidance capability.

Expected Results

The RHC algorithm will exhibit robust tracking performance and will be less
susceptible to large disturbances than the classic linear controller. However,
the linear controller will probably prove to track better than RHC, under
nominal conditions, because the RHC algorithm is inherently suboptimal due
to input quantization and other factors such as system dynamics model
inaccuracies. As an addition, the RHC method will also be able to avoid
obstacles, whereas this behavior is impossible for the linear controller.

Part 1, Purpose

Measure classical linear path tracking controller performance as a control for
the hypothesis.

Part 1, Design

The vehicle will attempt to track an obstacle free path using a classical
motion controller. The path will be provided as a preset circuit made up of a
variety of straight line segments and curved segments of different radii. The
use of a circuit track will maximize the collection of data per given test run,
which is beneficial since the time and preparation required to setup a single
run is nontrivial. The circuit will be designed such that the system should be
able to reach a stable steady state on one segment before the next is reached.
For each new segment encountered on the path, there will be a discontinuity
in curvature, heading, or cross track error. These discontinuities will allow
for time domain step response measurements to be made. The test will be
executed and logged at a nominal speed, in order to isolate the effect of
velocity on tracking performance. The test will then be repeated with a large
initial tracking error, in order to measure the controller’s ability to reacquire
the path.

Part 1, Logged
Measurements

Error Signals: Cross Track Error, Heading Error, and Speed Error.
Input Signals: Desired Vehicle Position, Heading, and Speed (all from input
path).
Output Signals: Steering, Throttle and Brake Actuator Commands.

Part 2, Purpose Measure the RHC algorithm’s path tracking control system performance.

129

Table 5-1: Continued.
Part Label Part Explanation

Part 2, Design

The vehicle will attempt to track an obstacle free path using the RHC
algorithm detailed in Chapter IV. All test tracks, speeds and procedures will
be identical to that of part one in order to maintain equality between the two
tests. The test will then be repeated with a large initial tracking error, in order
to measure the RHC ability to reacquire the path.

Part 2, Logged
Measurements

Error Signals: Cross Track / Transverse Error, Heading Error, and Speed
Error.
Input Signals: Desired Vehicle Position, Heading, and Speed (all from input
path).
Output Signals: Steering, Throttle and Brake Actuator Commands.

Part 3, Purpose Measure the RHC algorithm’s planning ability.

Test Part 3
Design

The vehicle will attempt to track the same path circuit as the previous to test
parts with the addition of obstacles. The obstructions will be placed such that
tracking the path on center would cause an impact, therefore the vehicle must
depart from the current path segment in order to avoid collision with the
obstacle. The obstacles used for this test will be lightweight construction
barrels, which are easily detected by system sensors and safe in the event of a
collision.

Test Part 3 Data Error Signals: Cross Track / Transverse Error, Heading Error, and Speed
Error.
Input Signals: Desired Vehicle Position, Heading, and Speed (all from input
path).
Output Signals: Steering, Throttle and Brake Actuator Commands.
Other data: Obstacle Clearance Distance (Minimum distance observed
between vehicle and obstacles)

130

Table 5-2: Test path circuit specification data. The 11 path segments for the control system tests
described in this Section are given with a start point, and end point latitude and
longitude. The segment radius is calculated as the multiplicative inverse of the
specified curvature. Positive curvature values indicate a leftward turning segment and
negative values indicate a rightward turning segment.

Segment Start Lat (deg) Start Lon (deg) End Lat (deg) End Lon (deg) Radius (m)

1 29.75262026 -82.26275871 29.75340236 -82.26275587 ∞

2 29.75340236 -82.26275587 29.75376698 -82.26318436 40.0

3 29.75376698 -82.26318436 29.75336974 -82.26361331 41.7

4 29.75336760 -82.26361326 29.75268459 -82.26361854 ∞

5 29.75268459 -82.26361854 29.75247728 -82.26383552 -23.3

6 29.75247705 -82.26384131 29.75248487 -82.26467643 ∞

7 29.75250188 -82.26473602 29.75250472 -82.26565011 ∞

8 29.75250472 -82.26565011 29.75240730 -82.26576274 10.9

9 29.75240730 -82.26576274 29.75231923 -82.26567174 9.8

10 29.75231897 -82.26566695 29.75228804 -82.26321990 ∞

11 29.75228804 -82.26321990 29.75260181 -82.26277899 43.5

Table 5-3: The time based step response metrics recorded between segments 6 and 7 in all of the

stable test runs. The values vary between controllers, but remain comparable.

Run Label Response
Time (sec)

Percent
Overshoot

Settling
Time (sec)

Steady State
Error (m)

GPSD Run 1 4.3 38.4 20.8 -0.34
GPSD Run 2 4.4 39.7 20.4 -0.28
RD Run 1 8.6 8.3 20.6 -0.67
RD Run 2 8.8 0 19.7 -0.79

131

Figure 5-1: An aerial photograph of the Gainesville Raceway road course. The track has a variety

of geometry that allows for accurate and controlled testing of an autonomous ground
vehicle.

132

29.7520

29.7524

29.7528

29.7532

29.7536

29.7540

-82.2660 -82.2655 -82.2650 -82.2645 -82.2640 -82.2635 -82.2630 -82.2625

Longitude (deg)

La
tit

ud
e

(d
eg

)

1

23

4

567
8

9
10 11

Figure 5-2: The path segments designed for the testing conducted at the Gainesville Raceway

road course. A total of 11 segments make up the course, each with varying curvature.
They are plotted over a geo-referenced global grid.

133

Figure 5-3: The position data collected from run 1 of test part 1. Both the vehicle’s position and

the planned path geometry are plotted over a geo-referenced grid.

134

Figure 5-4: The logged NaviGator heading signal from test part 1 run 1. The signal starts off with

an initial error value around 0.25 radians, and then regulates close to zero. There are
disturbances during the 6 to 7 segment transition and at the sharp turn portion of the
track.

135

Figure 5-5: The cross track error signal from run 1 test part 1. The cross track error is initially

around 4 meters and then converges toward zero. A disturbance is introduces at
approximately 100 seconds, and the sharp turn creates a few large peaks shortly there
after. The system is shown to track well here with steady state errors averaging less
than 0.5 meters.

136

Figure 5-6: The cross track error signal from test part 1 run 2. There is purposely a large initial

error, about 25 m, which is quickly regulated away by the PD controller, and the
system remains stable. The remaining parts of the mission are executed in a fashion
very similar to run 1, which is indicated by the timing and magnitude of the signal
shown here.

137

Figure 5-7: The cross track error signal from test part 1 run 3. The initial signal is two large for

the PD controller to regulate and therefore causes the system to stay at -20 meters.
The run was only conducted for approximately 30 seconds and then terminated for
safety concerns.

138

Figure 5-8: The output of all three wrench effort signals: steering throttle and brake, during run

1, test part 1. The steering signal is mostly smooth, with sharp discontinuities at
segment transitions where curvature feed-forward dominates. The speed control
signals are given for reference and demonstrate the speed system’s limit cycle like
behavior.

139

Figure 5-9: The speed controller performance data logged from run 1 test part 1. Notice that the

speed measurement reaches an oscillating but stable limit cycle, even though the
command remains constant. This is attributable to power train system nonlinearities
and complex dynamics.

140

Figure 5-10: The position data collected from run 1 of test part 2. Both the vehicle’s position and

the planned path geometry are plotted over a geo-referenced grid. This run’s
performance data is very similar to the previous controller, with the exception of a
larger steady state cross track error.

141

Figure 5-11: The cross track error signal from test part 2, run 1. Similar to the previous cross

track signals, shown here is the system’s performance while using the RD receding
horizon controller. There is a discontinuity around 100 seconds, due to path step
input, and also a large error peak due to the last sharp turn at 125 seconds.

142

Figure 5-12: The cross track error log from run 2, test part 2. An intended large initial error is

given, about 28 m. The RHC system regulates this directly down to near zero, with
minimal overshoot. From this point on the controller performs almost identically to
the previous run.

143

Figure 5-13: Each output signal logged during test part 2, run 1 (the nominal case). The steering

control signal is much different than the one seen in the classic controller. It is much
larger in certain cases and much smaller in others. One key feature is the input
quantization, which is implied by the square wave like signals during the wide turns
and long straight-aways.

144

Figure 5-14: The speed control system data logged during run 1 of test part 2. Again the system

demonstrates a stable limit cycle, as it did in the previous demonstration. This time
the signal relaxes for a period, the cause of which is unknown. It is probably
attributable to some nonlinearity in the system dynamics.

145

Figure 5-15: The position data collected from run 1 of test part 3. The obstacle locations during

this run are called out with red leaders. Notice that the vehicle position deviates from
the path around these areas.

146

Figure 5-16: The cross track error log from run 1, test part 3. The obstacle locations during this

run are called out with red leaders. Notice that the error signal increases and then
decreases at these points. Also a group of GPS position solution spikes are called out
and circled in blue.

147

Figure 5-17: Four traversability grids recorded during run 1 of test part 3. Barrel 1 is avoided

first (top left), then the 2nd (top right), the 3rd (bottom left), and finally the last barrel
(bottom right). Free space is indicated in gray, with obstacles in shades of red and
yellow. The pink region is space searched by the RHC algorithm, while the pink
edges represent unknown space.

148

CHAPTER 6
FUTURE WORK AND CONCLUSIONS

This dissertation has introduced a new and novel planning and control scheme for

autonomous systems. The method, called Heuristic Receding Horizon Control (HRHC) is used to

simultaneously plan and control an autonomous system through its operating environment. Also

a novel extension to classic Receding Horizon Control (RHC), called Dual-Frequency Receding

Horizon Control (DFRHC) has been proposed.

The focus and motivation for the two technologies has been established in Chapter I, along

with an initial problem statement. Specifically, it is desired to establish a method by which an

autonomous ground vehicle may control its own motion through a cluttered environment.

Chapter II has reviewed much of the relevant literature published by other researchers in this

field, and has thus helped to establish the technology’s uniqueness and niche within the realm of

robotics and automation. The theory behind the HRHC and DFRHC concepts was offered and

detailed in the third Chapter. In addition, the key proposal of this dissertation was summarized in

Remark 1 of that chapter. Also both of the new and novel methods were implemented and tested

on a real autonomous ground vehicle, the NaviGator, at the Center for Intelligent Machines and

Robotics. The tested performance results for that implementation were given in Chapter IV, and

were found to strongly support the theory and claims proposed.

Some advanced ideas and concepts, along with some remaining work that can be done to

continue this research in the future are offered in the first section below. They are followed in the

second section with some of the detailed conclusions that can be drawn from studying the theory,

implementation and testing results of this dissertation.

149

Future Work

There are several concepts and advancements that can be made and tested for the RHC

strategies of this dissertation. One comes from an implied hypothesis that both HRHC and

DFRHC technique allow for RHC to be applied faster and more efficiently than a classic RHC

optimization routine. While these techniques have been applied, tested, and shown to work on an

electromechanical system, they have not been compared directly with a classic optimizer.

For this hypothesis, the modified RHC routine would ideally be tested and controlled

against one that uses traditional optimization methods: Branch and Bound, Quadratic

Programming, etc. Since these algorithms are very time consuming and complicated to

implement, performing a thorough analysis of the new RHC algorithm against a classic one has

been determined to be beyond the scope of this dissertation.

The testing would require measuring the computation performance of the algorithms

themselves. Metrics that directly support the claim such as control loop frequency, bandwidth,

and data throughput, can offer valuable input with regard to the algorithm’s efficiency and

effectiveness. For example, since HRHC requires the expansion of state representing nodes, the

number of nodes searched in the process is another very good metric to evaluate the algorithm’s

efficiency, especially since the time performance and computation requirements are directly

proportional to the number of nodes expanded. This type of testing would be very valuable to

support the work begun in this thesis and offers a specific path for future research.

Another conceptual area could be focused on finding more advanced and theoretically

supported ways of input quantization in order to increase the solution optimality of the HRHC

routine. As discussed in the previous chapters, input quantization is required for the A* search,

but diminishes the quality of the overall control. Since the quantization is currently generated ad

hoc; further research in this area could certainly make the control algorithm and theory stronger.

150

Finally, many optimization routines implemented for RHC are able to use the previously

determined solution trajectory as a warm or running start for the next optimization attempt. Since

the state describing variables tend to change only slightly between control loop iterations, the

previous solution makes for a very good initial guess. The HRHC routine implemented in this

thesis does not use this technique, mostly because the solutions were shown to provide

satisfactory control, and the algorithm is able to maintain real-time performance. However,

research into giving the HRHC routine a warm start, could offer increased efficiency, which

would allow for more nodes to be searched and a more optimal solution to be found. This result

could then let the algorithm be applied to even more complex systems.

Conclusions

Motion planning and controlling an autonomous ground vehicle are very challenging tasks.

These tasks are difficult even when accomplished in two sequential steps, which is the

conventional practice in design and implementation. This dissertation has studied, theorized,

implemented, and tested the unification of the two tasks into one. It can be drawn from this work

that their combination indeed offers a significant amount of engineering consolidation. This is

especially true when faced with the often daunting system integration effort required to create a

functional real world robotic system. All of the signals, interconnections, and validations that

must be made between the otherwise two sequential processes are avoided. This single task

therefore, allows for less time to be spent in the development phase of the implementation.

One drawback in general is that the technology still needs some theoretical and practical

hardening. It is not yet a tried and true methodology, and it is not simple. Even after the

development stage, tuning a Receding Horizon Controller is difficult and vague. The engineers

working with it must have a thorough knowledge of the system dynamics and nuances, as well as

an advanced understanding of the underlying optimization routine. However, because the RHC is

151

more informed of the system dynamics, stronger control system performance can be achieved

with the technique. Both system stability and robustness can benefit from the nonlinear

capabilities of the controller.

Finally, the theoretical concepts of this thesis have overall been in effort to help unify the

two largely accepted approaches to advanced robotics, namely, the Artificial Intelligence (AI)

approach and the Control Systems approach. The AI approach is mainly logical in nature, and is

based around proving that theoretical methods will yield admissible results, or in other words

results which are valid, predictable and consistent. The controls approach is largely mathematical

in nature and is concerned with the system dynamics and proving that formulaic controllers will

yield stable and convergent behavior. Clearly the two methods must be related somehow, since

the end results tend to be very similar, and because of the strong connections that analytical and

logical mathematics share. This dissertation has shown that for one particular control method, an

AI approach, A* search, and a controls method RHC, can be unified if the problem is structured

and cast in a particular way. This is an important result identifying that the two largely practiced

approaches may be more related than they appear.

152

LIST OF REFERENCES

[AN04] An, D., Wang, H., “VPH: A New Laser Radar Based Obstacle Avoidance Method
for Intelligent Mobile Robots,” Proceedings. 2004 IEEE World Congress on
Intelligent Control and Automation, Hangzhou, China, June (2004), pp. 4681-
4685.

[AND83] Andrews, J.R., Hogan, N., “Impedance Control as a Framework for Implementing
Obstacle Avoidance in a Manipulator,” Control of Manufacturing Processes and
Robotic Systems, Eds. Hardt, D.E. and Book, W., ASME, Boston, 1983, pp. 243-
251.

[BAL00] Ball, Sir R.S., A Treatise on the Theory of Screws, Cambridge, UK, Cambridge
University Press, 1900.

[BAR92] Barraquand, J., Langlois, B., Latombe, J.-C., “Numerical Potential Field
Techniques for Robot Path Planning,” IEEE Transactions on Systems, Man and
Cybernetics, Volume 22, Issue 2, March-April (1992), pp. 224-241.

[BEM00] Bemporad, A., Mignone, D., “MIQP.M: A Matlab Function for Solving Mixed
Integer Quadratic Programs,” Technical Report, code available at
http://control.ethz.ch/~hybrid/miqp, Zurich, September 2006.

[BOR89] Borenstein, J., Koren, Y., “Real-Time Obstacle Avoidance for Fast Mobile
Robots,” IEEE Transactions on Systems, Man, and Cybernetics, Volume 19, Issue
5, October (1989), pp. 1179-1187.

[BOR91] Borenstein, J., Koren, Y., “The Vector Field Histogram-Fast Obstacle Avoidance
for Mobile Robots,” IEEE Transactions on Robotics and Automation, Volume 7,
Issue 3, June (1991), pp. 278-288.

[BRE63] Bresenham, J.E. “An Incremental Algorithm for Digital Plotting,”
Presented at ACM National Conference, August (1963).

[BRO83] Brockett, R.W., “Asymptotic Stability and Feedback Stabilization," in Differential
Geometric Control Theory, R. W. Brockett, R. S. Millman, H. J. Sussmann (Eds.),
Birkhauser, Boston, MA, (1983), pp. 181-191.

[BRO00] Brockett, R., Liberzon, D., “Quantized Feedback Stabilization of Linear
Systems,” IEEE Transactions on Automatic Control, Volume 45, Issue 7, July
(2000), pp. 1279-1289.

[COU92] Coulter, C., “Implementation of the Pure Pursuit Path Tracking Algorithm,”
Report CMU-RI-TR-92-01, Carnegie Mellon University, Pittsburg PA, 1992.

[CHO00] Choi, S.B., “The Design of a Look-Down Feedback Adaptive Controller for the
Lateral Control of Front-Wheel-Steering Autonomous Highway Vehicles,” IEEE
Transactions on Vehicular Technology, Volume 49, Issue 6, November (2000),
pp. 2257-2269.

153

[CRA06] Crane, C. D., Armstrong, D.G., Touchton, R., Galluzzo, T., Solanki, S.,
Lee, J., Kent, D., Ahmed, M., Montane, R., Ridgeway, S., Velat, S., Garcia,
G., Griffis, M., Gray, S., Washburn, J., Routson, G., "Team CIMAR’s
NaviGATOR: An Unmanned Ground Vehicle for Application to the 2005
DARPA Grand Challenge." Journal of Field Robotics, Volume 29, Issue 9,
September (2006), pp. 599-623.

[DEL90] Delchamps, D.F., “Stabilizing a Linear System with Quantized State Feedback,”
IEEE Transactions on Automatic Control, Volume 35, Issue 8, August (1990), pp.
916-924.

[DEL98] De Luca, A., Oriolo, G., Samson, C., “Feedback Control of a Nonholonomic Car-
like Robot,” Chapter 4 of: Laumond, J-P., Robot Motion Planning and Control.
Lectures Notes in Control and Information Sciences 229: Springer-Verlag Telos,
1998.

[DIX00] Dixon, W.E., Dawson, D.M., Zergeroglu, E., Behal, A., Nonlinear Control of
Wheeled Mobile Robots, Vol. 262 Lecture Notes in Control and Information
Sciences, Springer-Verlag London, 2000.

[DIX05] Dixon, W.E., Galluzzo, T. Hu, G., Crane, C., “Adaptive Velocity Field Control of
a Wheeled Mobile Robot.” Proceedings of the Fifth International Workshop on
Robot Motion and Control, 2005. RoMoCo ’05, Dymaczewo, Poland, June
(2005), pp. 145-150.

[DUB57] Dubins, L.E., “On Curves of Minimal Length with a Constraint on Average
Curvature, and the Prescribed Initial and Terminal Positions and Tangents.”
American Journal of Mathematics, (1957), 79(3): pp. 497-516.

[ELF86] Elfes, A., “A Sonar-based Mapping and Navigation System.” Proceedings. 1986
IEEE International Conference on Robotics and Automation, April (1986), pp.
1151-1156.

[ELF89] Elfes, A., “Using Occupancy Grids for Mobile Robot Perception and Navigation.”
IEEE Computer, Volume 22, Issue 6, April (1989), pp. 46-57.

[FIO93] Fiorini, P., Shiller, Z., “Motion Planning in Dynamic Environments Using the
Relative Velocity Paradigm,” Proceedings. 1993 IEEE International Conference
on Robotics and Automation, May (1993), pp. 560-565.

[GU05] Gu, D., Hu, H., “A Stabilization Receding Horizon Regulator for Nonholonomic
Mobile Robots,” IEEE Transactions on Robotics, Volume 21, Issue 5, October
(2005), pp. 1022-1028.

[HAR68] Hart, P.E., Nilsson, N.J., Raphael, B., “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science
and Cybernetics, SSC4 (2), (1968), pp. 100-107.

[ISI95] Isidori, A., Nonlinear Control Systems, 3rd Edition, London, UK: Springer-
Verlag, 1995.

[JIA97] Jiang, Z-P., Nijmeijer, H., “Tracking Control of Mobile Robots: A Case Study in
Backstepping,” Automatica, Volume 33, Issue 7, (1997), pp. 1393-1399.

154

[JIN05] Jing, X-J., Wang, Y-C., “Control of Behavior Dynamics for Motion Planning of
Mobile Robots in Uncertain Environments,” Proceedings. 2005 IEEE
International Conference on Mechatronics, Taipei, Taiwan, July (2005), pp. 364-
369.

[KAM86] Kambhampati, S., Davis, L., “Multiresolution Path Planning for Mobile Robots,”
IEEE Journal of Robotics and Automation, Volume 2, Issue 3, September (1986),
pp. 135-145.

[KAV96] Kavralu, L., Svestka, P., Latombe, J-C., Overmars, M., “Probabilistic Roadmaps
for Path Planning in High-Dimensional Configuration Spaces,” IEEE
Transactions on Robotics and Automation, Volume 12, Issue 4, August (1996),
pp. 566-580.

[KIM01] Kim, C.S., Park, K.S., Jeong, S.G., Lee, W.G., Lee, H.C., Kim, J.C., Bae, J.I.,
Lee, M.H., “H ∞ Steering Control System for the Unmanned Vehicle,”
Proceedings. 2001 IEEE International Symposium on Industrial Electronics,
Pusan, Korea, June (2001), pp. 1441-1445.

[KEY94] Keymeulen, D., Decuyper, J., “The Fluid Dynamics Applied to Mobile Robot
Motion: The Stream Field Method,” Proceedings. 1994 IEEE International
Conference on Robotics and Automation, May (1994), pp. 378-385.

[KHA85] Khatib, O., “Real-time Obstacle Avoidance for Manipulators and Mobile Robots,”
Proceedings. 1985 IEEE International Conference on Robotics and Automation,
Mar (1985), pp. 500-505.

[KON99] Konkimalla, P., LaValle, S.M., “Efficient Computation of Optimal Navigation
Functions for Nonholonomic Planning.” Proceedings of the First Workshop on
Robot Motion and Control, 1999. RoMoCo ’99, Kiekrz, Poland, June (1999), pp.
187-192.

[KOR91] Koren, Y., Borenstein, J., “Potential Field Methods and Their Inherent
Limitations for Mobile Robot Navigation,” Proceedings. 1991 IEEE International
Conference on Robotics and Automation, April (1991), pp. 1398-1404.

[KUA85] Kaun, D., Zamiska, J., Brooks, R., “Natural Decomposition of Free Space for Path
Planning,” Proceedings. 1985 IEEE International Conference on Robotics and
Automation, March (1985), pp. 168-173.

[LI93] Li, P., Horowitz, R., “On Velocity Field Control of Mechanical Systems,”
Proceedings. 1993 IEEE Conference on Decision and Control, December (1993),
pp. 3124-3125.

[LI96] Li, P., Horowitz, R., “Application of Passive Velocity Field Control to Robot
Contour Following Problems,” Proceedings. 1996 IEEE Conference on Decision
and Control, December (1996), pp. 378-385.

[LIN04] Lingelbach, F., “Path Planning using Probabilistic Cell Decomposition,”
Proceedings. 2004 IEEE International Conference on Robotics and Automation,
New Orleans, LA, April (2004), pp. 467-472.

155

[LIU94] Liu, Y-H., Arimoto, S., “Computation of the Tangent Graph of Polygonal
Obstacles by Moving-Line Processing,” IEEE Transactions on Robotics and
Automation, Volume 10, Issue 6, December (1994), pp. 823-830.

[LOI03] Loizou, S.G., Tanner, H.G., Kumar, V., Kyriakopoulos, K.J., “Closed Loop
Navigation for Mobile Agents in Dynamic Environments.” Proceedings. 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems, Las
Vegas, NV, October (2003), pp. 3769-3774.

[LOZ79] Lozano-Perez, T, Wesley, M., “An Algorithm for Planning Collision-Free Paths
Among Polyhedral Obstacles,” Communications of the ACM, Volume 22, Issue
10, October (1979), pp. 560-570.

[MAY90] Mayne, D.Q., Michalska, H., “Receding Horizon Control of Nonlinear Systems,”
IEEE Transactions on Automatic Control, Volume 35, Issue 7, July (1990), pp.
814-824.

[MAY00] Mayne, D. Q., Rawlings, J. B., Rao, C. V., Scokaert, P. O. M., “Constrained
model predictive control: Stability and optimality,” Automatica, Volume 36, Issue
6, June (2000), pp. 789-814.

[MEY86] Meystel, A., Guez, A., Hillel, G., “Minimum Time Path Planning for a Robot,”
Proceedings. 1986 IEEE International Conference on Robotics and Automation,
April (1986), pp. 1678-1687.

[MIU99] Miura, J., Uozumi, H., Shirai, Y., “Mobile Robot Motion Planning
Considering the Motion Uncertainty of Moving Obstacles,” Proceedings. 1999
IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, Japan,
October (1999), pp. 692-697.

[NEL88] Nelson, W.L., Cox, I.J., “Local Path Control for an Autonomous Vehicle,”
Proceedings. 1988 IEEE International Conference on Robotics and Automation,
April (1988), pp. 1504-1510.

[NIC98] Nicolao, G.D., Magni, L., Scattolini, R., “Stabilizing Receding-Horizon Control
of Nonlinear Time-Varying Systems,” IEEE Transactions on Automatic Control,
Volume 43, Issue 7, July (1998), pp. 1030-1036.

[NIL71] Nilsson, Nils, J. Problem Solving Methods in Artificial Intelligence. New York:
McGraw-Hill, 1971.

[NIL98] Nilsson, Nils, J. Artificial Intelligence: A New Synthesis. San Francisco: Morgan
Kaufman Publishers, Inc., 1998.

[OLL95] Ollero, A., Heredia, G., “Stability Analysis of Mobile Robot Path Tracking,”
Proceedings. 1995 IEEE/RSJ International Conference on Intelligent
Robots and Systems, (1995), pp. 461-466.

[REE91] Reeds J.A., Shepp, R.A., “Optimal Paths for a Car that Goes Both Forward and
Backward,” Pacific Journal of Mathematics (1991), 145(2): pp. 367-393.

156

[RIM88] Rimon, E., Koditschek, D.E., “Exact Robot Navigation using Cost Functions: The
Case of Distinct Spherical Boundaries in En,” Proceedings. 1988 IEEE
International Conference on Robotics and Automation, April (1988), pp. 1791-
1796.

[RIM91] Rimon, E., “A Navigation Function for a Simple Rigid Body,” Proceedings. 1991
IEEE International Conference on Robotics and Automation, April (1991), pp.
546-551.

[ROH87] Rohnert, H., “Shortest Paths in the Plane with Convex Polygonal Obstacles,”
Information Processing Letters, Volume 23, 1987, pp. 71-76.

[SAM90] Samson, C., “Velocity and Torque Feedback Control of a Nonholonomic Cart,”
Proceedings. International Workshop in Adaptive and Nonlinear Control: Issues
in Robotics, Grenoble, France, 1990.

[SAM95] Samson, C., “Control of Chained Systems Application to Path Following and
Time-Varying Point-Stabilization of Mobile Robots,” IEEE Transactions on
Automatic Control, Volume 40, Issue 1, January (1995), pp. 64-77.

[SCO99] Scokaert, P.O.M, Mayne, D.Q., Rawlings, J.B., “Suboptimal Model Predictive
Control (Feasibility Implies Stability),” IEEE Transactions on Automatic Control,
Volume 44, Issue 3, March (1999), pp. 648-654.

[TAK89] Takahashi, O., Schilling, R.J., “Motion Planning in a Plane Using Generalized
Voronoi Diagrams,” IEEE Transactions on Robotics and Automation, Volume 5,
Issue 2, April (1989), pp. 143-150.

[THO84] Thorpe, C., Matthies, L., “Path Relaxation: Path Planning for a Mobile Robot,”
Proceedings. 1984 IEEE Conference OCEANS, September (1984), pp. 576-581.

[THR05] Thrun, S., Burgard, W., Fox, D., Probabilistic Robotics, Cambridge, MA: The
MIT Press, 2005.

[TIL90] Tilove, R.B., “Local Obstacle Avoidance for Mobile Robots Based on the Method
of Artificial Potentials,” Proceedings. 1990 IEEE International Conference on
Robotics and Automation, May (1990), pp. 566-571.

[US00] United States. Floyd D. Spence National Defense Authorization Act for Fiscal
Year 2001. H.R. 5408. H.Rept. 106-945. Congressional Record. Washington:
GPO, October 6, 2000.

[WAR89] Warren, C.W., “Global Path Planning using Artificial Potential Fields,”
Proceedings. 1989 IEEE International Conference on Robotics and Automation,
Volume 1, May (1989), pp. 316-321.

[WIT00] Wit, J., Vector Pursuit Path Tracking for Autonomous Ground Vehicles. Ph.D.
Dissertation, University of Florida, 2000.

157

BIOGRAPHICAL SKETCH

Thomas Galluzzo was born and raised in western New York. He holds a B.S. in aerospace

engineering from Embry-Riddle Aeronautical University at Daytona Beach, FL. He is currently

working on completing a doctoral degree from the University of Florida, focused on robotic

ground vehicles. He plans to continue his career as an engineer at Harris Corporation in

Melbourne, FL, after his graduate education.

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Background
	Focus
	Problem statement
	Motivation
	REVIEW OF THE LITURATURE
	Planning and control input structures
	Potential Fields
	Navigation Functions
	Velocity Fields
	Occupancy Grids
	Geometric Models

	Motion Command Structures
	Planning Strategies and Algorithms
	Deterministic Geometric Planners
	Search and Heuristic Methods
	Vector Methods
	Probabilistic Planning

	Control Strategies and Algorithms
	Kinematics Methods
	Linear Control Systems
	Nonlinear Control
	Model Predictive Control

	THEORETICAL APPROACH
	Introduction
	Notation, Assumptions, and Preliminary Theorems
	A* Algorithm and Admissibility
	Quantization and Invariant Sets
	Heuristic Receding Horizon Control
	Dual-Frequency Receding Horizon Control
	Conclusions

	APPLIED APPROACH AND IMPLEMENTATION
	Introduction
	Obstacle Avoidance
	Admissible Heuristics for HRHC
	Reactive Driver Implementation
	Faults and Failure Modes
	Conclusions

	TESTING AND RESULTS
	Test Plan
	Test Review
	Test Results

	FUTURE WORK AND CONCLUSIONS
	Future Work
	Conclusions

	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Background
	Focus
	Problem statement
	Motivation
	REVIEW OF THE LITURATURE
	Planning and control input structures
	Potential Fields
	Navigation Functions
	Velocity Fields
	Occupancy Grids
	Geometric Models

	Motion Command Structures
	Planning Strategies and Algorithms
	Deterministic Geometric Planners
	Search and Heuristic Methods
	Vector Methods
	Probabilistic Planning

	Control Strategies and Algorithms
	Kinematics Methods
	Linear Control Systems
	Nonlinear Control
	Model Predictive Control

	THEORETICAL APPROACH
	Introduction
	Notation, Assumptions, and Preliminary Theorems
	A* Algorithm and Admissibility
	Quantization and Invariant Sets
	Heuristic Receding Horizon Control
	Dual-Frequency Receding Horizon Control
	Conclusions

	APPLIED APPROACH AND IMPLEMENTATION
	Introduction
	Obstacle Avoidance
	Admissible Heuristics for HRHC
	Reactive Driver Implementation
	Faults and Failure Modes
	Conclusions

	TESTING AND RESULTS
	Test Plan
	Test Review
	Test Results

	FUTURE WORK AND CONCLUSIONS
	Future Work
	Conclusions

	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

